A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres.
View Article and Find Full Text PDFPolymer-based textiles have a major impact on human well-being, as they provide the desired functional protection and aesthetic comfort when worn. However, natural and synthetic polymer-based textiles can also pose serious health risks, as they are surfaces that allow the adhesion of various bacteria, including pathogenic bacteria. To minimise these problems, antibacterial chemical treatments are generally applicable in the case of polymer-based textiles.
View Article and Find Full Text PDFThe outbreak of the Coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing antiviral surface coatings that are capable of repelling pathogens and neutralizing them through self-sanitizing properties. In this study, a novel coating design based on few-layer graphene (FLG) is proposed and silver-decorated micro copper flakes (CuMF) that exhibit both antibacterial and antiviral properties. The role of sacrificial anode surfaces and intrinsic graphene defects in enhancing the release of metal ions from CuMF embedded in water-based binders is investigated.
View Article and Find Full Text PDFNanocomposites constructed with heterostructures of graphitic carbon nitride (g-CN), silver (Ag), and titanium dioxide (TiO) have emerged as promising nanomaterials for various environmental, energy, and clinical applications. In the field of textiles, Ag and TiO are already recognized as essential nanomaterials for the chemical surface and bulk modification of various textile materials, but the application of composites with g-CN as a green and visible-light-active photocatalyst has not yet been fully established. This review provides an overview of the construction of Ag/g-CN, TiO/g-CN, and Ag/TiO/g-CN heterostructures; the mechanisms of their photocatalytic activity; and the application of photocatalytic textile platforms in the photochemical activation of organic synthesis, energy generation, and the removal of various organic pollutants from water.
View Article and Find Full Text PDFThe development of durable multifunctional properties is crucial for the production of high-performance technical textiles. In this work, a novel, environmentally friendly and facile method was developed for the chemical modification of cotton fabric by in situ biosynthesis of Ag NPs in the presence of sumac leaf extract as a reducing agent on TiO, ZnO and TiO + ZnO previously applied to cotton fibres. The results showed that the presence of TiO, ZnO and TiO + ZnO significantly increased the concentrations of the synthesised Ag NPs on the cotton fibres compared to the one-component Ag coating.
View Article and Find Full Text PDFGrowing demand for sustainable and green technologies has turned industries and research toward the more efficient utilization of natural and renewable resources. In an effort to tackle this issue, we developed an antibacterial textile nanocomposite material based on cotton and peat fibers with immobilized Cu-based nanostructures. In order to overcome poor wettability and affinity for Cu-ions, the substrate was activated by corona discharge and coated with the biopolymer chitosan before the in situ synthesis of nanostructures.
View Article and Find Full Text PDFAs a promising organic semiconducting material, polymeric graphitic carbon nitride (g-CN) has attracted much attention due to its excellent optical and photoelectrochemical properties, thermal stability, chemical inertness, nontoxicity, abundance, and low cost. Its advantageous visible light-induced photocatalytic activity has already been beneficially used in the fields of environmental remediation, biological applications, healthcare, energy conversion and storage, and fuel production. Despite the recognized potential of g-CN, there is still a knowledge gap in the application of g-CN in the field of textiles, with no published reviews on the g-CN-functionalization of textile materials.
View Article and Find Full Text PDFThe aim of this study was to evaluate the antibacterial and antifungal activity, cytotoxicity, leaching, and ecotoxicity of novel flame retardant polyamide 6 (PA6) textile fibers developed by our research group. The textile fibers were produced by the incorporation of flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivative (PHED) in the PA6 matrix during the in situ polymerization process at concentrations equal to 10 and 15 wt% (PA6/10PHED and PA6/15PHED, respectively). Whilst the nanodispersed PHED provided highly efficient flame retardancy, its biological activity led to excellent antibacterial activity against and , as well as excellent antifungal activity against and .
View Article and Find Full Text PDFStudies of the production of fiber-forming polyamide 6 (PA6)/graphene composite material and melt-spun textile fibers are scarce, but research to date reveals that achieving the high dispersion state of graphene is the main challenge to nanocomposite production. Considering the significant progress made in the industrial mass production of graphene nanoplatelets (GnPs), this study explored the feasibility of production of PA6/GnPs composite fibers using the commercially available few-layer GnPs. To this aim, the GnPs were pre-dispersed in molten -caprolactam at concentrations equal to 1 and 2 wt %, and incorporated into the PA6 matrix by the in situ water-catalyzed ring-opening polymerization of -caprolactam, which was followed by melt spinning.
View Article and Find Full Text PDFThis research aimed to study the influence of lyocell with incorporated ZnO (CLY) for antibacterial activity and biodegradation of fiber blends composed of viscose (CV), flax (LI), and CLY. Fiber blended samples with an increased weight fraction of CLY fibers were composed, and single CLY, CV and LI fibers were also used for comparison. Antibacterial activity was determined for the Gram-negative and the Gram-positive bacteria.
View Article and Find Full Text PDFA stimuli-responsive cotton fabric was designed using temperature and pH-responsive poly-N-isopropylacrylamide (poly-NiPAAm) and chitosan (PNCS) microgel as a carrier of antimicrobially active 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC), which forms a bio-barrier on the fibre surface. The influence of Si-QAC on the moisture management and thermoregulation abilities of the PNCS microgel was investigated. Using a pad-dry cure method, Si-QAC was applied to a 100% cotton fabric model in concentrations ranging from 0.
View Article and Find Full Text PDFSilver nanoparticles were embedded into a temperature- and pH-responsive microgel based on poly-(N-isopropylacrylamide) and chitosan (PNCS) before or after its application to cotton fabric to create a smart stimuli-responsive textile with simultaneous moisture management and controlled antimicrobial activities. Two different methods of silver embedment into the PNCS microgel using two different forms of silver nanoparticles were studied, i.e.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2014
Antimicrobial bio-barriers formed on cotton (CO), silk (SE), and woollen (WO) fabrics were prepared by the application of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC) at 11 concentrations ranging from 0.5% to 20% using an exhaustion method. The presence of the Si-QAC coating on the treated fabric samples was detected by X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2013
A two-step antimicrobial finishing procedure was applied to wool (WO) and polyester (PES) fabrics and a WO/PES fabric blend, in which the pad-dry-cure method was performed to create a functional silica matrix through the application of an inorganic-organic hybrid sol-gel precursor (RB) followed by the in situ synthesis of AgCl particles on the RB-treated fibres using 0.10 and 0.50mM AgNO3 and NaCl.
View Article and Find Full Text PDFIn a continuation of previous studies, the wetting properties of the hydrophobic diureapropyltriethoxysilane [bis(aminopropyl)-terminated polydimethylsiloxane (1000)] (PDMSU) sol-gel hybrid, which forms washing-resistant water-repellent finishes on cotton fabrics, were further investigated. The addition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) to PDMSU resulted in a highly apolar low-energy surface on aluminum with gammaStotal equal to 14.5 mJ/m2 and a DetlaGiwi value of -82 mJ/m2.
View Article and Find Full Text PDFA novel diureapropyltriethoxysilane [bis(aminopropyl)-terminated-poly(dimethylsiloxane) (1000)] (PDMSU) sol-gel hybrid was synthesized and applied on cotton to make it water repellent. Surface-energy values of PDMSU deposited on an aluminum substrate were determined, and the contact angle for water was assessed for impregnated cotton fabrics. The stability of the coatings was determined by repetitive washing, and their degradation was investigated with the help of the infrared attenuated total reflection (ATR) technique.
View Article and Find Full Text PDF