Disorientation is an early symptom of dementia, suggesting impairments in neural circuits responsible for head direction signaling. The anterodorsal thalamic nucleus (ADn) exhibits early and selective vulnerability to pathological misfolded forms of tau (ptau), a major hallmark of Alzheimer's disease and ageing. The ADn contains a high density of head direction (HD) cells; their disruption may contribute to spatial disorientation.
View Article and Find Full Text PDFWidespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected.
View Article and Find Full Text PDFIntracellular aggregation of hyperphosphorylated Tau (pTau) in the brain is associated with cognitive and motor impairments, and ultimately neurodegeneration. We investigate how human pTau affects cells and network activity in the hippocampal formation of the THY-Tau22 tauopathy model mice in vivo. We find that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to neurodegeneration, and we establish that pTau spreads to oligodendrocytes.
View Article and Find Full Text PDF