Publications by authors named "Barbara Pusey"

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc).

View Article and Find Full Text PDF
Article Synopsis
  • Genomic sequencing is a crucial tool for identifying genetic issues in rare Mendelian diseases, and while techniques are improving, there’s a need to find common practices and areas for better methods in the diagnostic process.* -
  • A study involved gathering information from a genetic testing lab and 11 clinical sites across the U.S. to understand the computational strategies used in workflow for analyzing genomic data.* -
  • Results showed that while there are solid methods for initial data processing, significant variation exists in later steps, especially in how data is prioritized and integrated, indicating that enhancing detection of certain variants could aid in resolving tough undiagnosed cases.*
View Article and Find Full Text PDF

This study describes a 13-yr-old girl with orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency, and multiorgan failure involving the gut and bladder. Exome sequencing revealed a de novo, loss-of-function allele in , the gene encoding the Na-K-2Cl cotransporter-1. The 11-bp deletion in exon 22 results in frameshift (p.

View Article and Find Full Text PDF

Background: Exome sequencing has advanced to clinical practice and proven useful for obtaining molecular diagnoses in rare diseases. In approximately 75 % of cases, however, a clinical exome study does not produce a definitive molecular diagnosis. These residual cases comprise a new diagnostic challenge for the genetics community.

View Article and Find Full Text PDF

Background: Mutations of TCF4, which encodes a basic helix-loop-helix transcription factor, cause Pitt-Hopkins syndrome (PTHS) via multiple genetic mechanisms. TCF4 is a complex locus expressing multiple transcripts by alternative splicing and use of multiple promoters. To address the relationship between mutation of these transcripts and phenotype, we report a three-generation family segregating mild intellectual disability with a chromosomal translocation disrupting TCF4.

View Article and Find Full Text PDF

Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families.

View Article and Find Full Text PDF

In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome.

View Article and Find Full Text PDF