Publications by authors named "Barbara Poszewiecka"

Resolving complex genomic regions rich in segmental duplications (SDs) is challenging due to the high error rate of long-read sequencing. Here, we describe a targeted approach with a novel genome assembler PhaseDancer that extends SD-rich regions of interest iteratively. We validate its robustness and efficiency using a golden-standard set of human BAC clones and in silico-generated SDs with predefined evolutionary scenarios.

View Article and Find Full Text PDF

Background: The reduction of the chromosome number from 48 in the Great Apes to 46 in modern humans is thought to result from the end-to-end fusion of two ancestral non-human primate chromosomes forming the human chromosome 2 (HSA2). Genomic signatures of this event are the presence of inverted telomeric repeats at the HSA2 fusion site and a block of degenerate satellite sequences that mark the remnants of the ancestral centromere. It has been estimated that this fusion arose up to 4.

View Article and Find Full Text PDF

In recent years great progress has been made in identification of structural variants (SV) in the human genome. However, the interpretation of SVs, especially located in non-coding DNA, remains challenging. One of the reasons stems in the lack of tools exclusively designed for clinical SVs evaluation acknowledging the 3D chromatin architecture.

View Article and Find Full Text PDF

De novo balanced chromosomal aberrations (BCAs), such as reciprocal translocations and inversions, are genomic aberrations that, in approximately 25% of cases, affect the human phenotype. Delineation of the exact structure of BCAs may provide a precise diagnosis and/or point to new disease loci. We report on six patients with de novo balanced chromosomal translocations (BCTs) and one patient with a de novo inversion, in whom we mapped breakpoints to a resolution of 1 bp, using shallow whole-genome mate pair sequencing.

View Article and Find Full Text PDF

Background: Mapping the breakpoints in de novo balanced chromosomal translocations (BCT) in symptomatic individuals provides a unique opportunity to identify in an unbiased way the likely causative genetic defect and thus find novel human disease candidate genes. Our aim was to fine-map breakpoints of de novo BCTs in a case series of nine patients.

Methods: Shallow whole-genome mate pair sequencing (SGMPS) together with long-range PCR and Sanger sequencing.

View Article and Find Full Text PDF