Background: Selective Cyclin-Dependent Kinase 4/6 inhibitors (CDK4/6i) have revolutionized the treatment of breast cancer and have potential in other cancers, being manageable drugs yet with some bone marrow toxicity. Selective CDK9 inhibitors (CDK9i) never advanced into clinical use, partly due to side effects, including gastrointestinal toxicity, and a small window between activity and cytotoxicity, which results in a narrow therapeutic index (TI).
Method: To overcome the drawbacks of CDK4/6 and CDK9 inhibitors, we have developed myrtleciclib, a selective CDK4/6/9 inhibitor with few non-critical molecular off-targets.
The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research.
View Article and Find Full Text PDFSARS-CoV-2 is inactivated in aerosol (its primary mode of transmission) by means of radiated microwaves at frequencies that have been experimentally determined. Such frequencies are best predicted by the mathematical model suggested by Taylor, Margueritat and Saviot. The alignment between such mathematical prediction and the outcomes of our experiments serves to reinforce the efficacy of the radiated microwave technology and its promise in mitigating the transmission of SARS-CoV-2 in its naturally airborne state.
View Article and Find Full Text PDFCoronaviruses are a family of viruses that cause disease in mammals and birds. In humans, coronaviruses cause infections on the respiratory tract that can be fatal. These viruses can cause both mild illnesses such as the common cold and lethal illnesses such as SARS, MERS, and COVID-19.
View Article and Find Full Text PDFDespite new antivirals are being approved against SARS-CoV-2 they suffer from significant constraints and are not indicated for hospitalized patients, who are left with few antiviral options. Repurposed drugs have previously shown controversial clinical results and it remains difficult to understand why certain trials delivered positive results and other trials failed. Our manuscript contributes to explaining the puzzle: this might have been caused by a suboptimal drug exposure and, consequently, an incomplete virus suppression, also because the drugs have mostly been used as add-on monotherapies.
View Article and Find Full Text PDFThe coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (, isolation and social distancing), antiviral treatments, and vaccines.
View Article and Find Full Text PDFSmall molecule inhibitors of the HIV-1 nucleocapsid protein (NC) are considered as promising agents in the treatment of HIV/AIDS. In an effort to exploit the privileged 2-amino-4-phenylthiazole moiety in NC inhibition, here we conceived, synthesized, and tested 18 NC inhibitors (NCIs) bearing a double functionalization. In these NCIs, one part of the molecule is deputed to interact noncovalently with the NC hydrophobic pocket, while the second portion is designed to interact with the N-terminal domain of NC.
View Article and Find Full Text PDFHIV/AIDS is still one of the leading causes of death worldwide. Current drugs that target the canonical steps of the HIV-1 life cycle are efficient in blocking viral replication but are unable to eradicate HIV-1 from infected patients. Moreover, drug resistance (DR) is often associated with the clinical use of these molecules, thus raising the need for novel drug candidates as well as novel putative drug targets.
View Article and Find Full Text PDFHere, we describe the design, synthesis, biological evaluation, and identification of a clinical candidate non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a novel aryl-phospho-indole (APhI) scaffold. NNRTIs are recommended components of highly active antiretroviral therapy (HAART) for the treatment of HIV-1. Since a major problem associated with NNRTI treatment is the emergence of drug resistant virus, this work focused on optimization of the APhI against clinically relevant HIV-1 Y181C and K103N mutants and the Y181C/K103N double mutant.
View Article and Find Full Text PDFThe first example of a nucleoside analogue bearing a 5'-deoxy-beta-D-allo-septanose as the sugar moiety was synthesized and evaluated as a potential inhibitor of several virus replication.
View Article and Find Full Text PDF