The synthesis of nanoporous membranes based on different concepts and materials is a field of active research. This review focuses on the synthesis strategies, mesophase evolution mechanisms and potential applications of mesoporous materials confined within anodic alumina membranes (AAM). Following a rapid evolution of synthetic techniques, a significant number of different mesoporous materials (e.
View Article and Find Full Text PDFAn efficient method is described for the preparation of phase-pure columnar mesoporous silica nanosystems within the channels of anodic alumina membranes (AAM) via evaporation-induced self-assembly (EISA). Upon the basis of a systematic investigation of the effects of interfacial interactions and different synthesis parameters on the resulting hierarchical mesophase, a salt-induced phase transformation was developed for efficient structural control. Samples with a columnar hexagonal 2D structure along the vertical channels of the AAM can be produced with ionic CTAB as template.
View Article and Find Full Text PDFThe structural evolution of periodic mesoporous material within the channels of anodic alumina membranes (AAMs) by evaporation-induced self-assembly (EISA) is investigated by a combination of in situ grazing-incidence small-angle X-ray scattering (GISAXS) with parallel detection of solvent evaporation and ex situ transmission electron microscopy (TEM). Kinetically controlled and equilibrium-controlled structural evolution can be distinguished for these EISA processes. A new mechanism for formation of mesostructures in the confined environment of AAMs is proposed.
View Article and Find Full Text PDFThe formation and subsequent transformations of mesostructured silica within the confined tubular environment of anodic alumina membrane (AAM) channels [porous alumina membrane (PAM) channels] were investigated for the first time in situ with grazing incidence small-angle X-ray scattering (GISAXS) techniques, in combination with ex situ transmission electron microscopy (TEM) of the same samples. A better understanding of the mesostructure formation mechanism within the confined space of the AAM pores is a direct result of this study. Three different surfactants were used as the structure-directing agents in acid-catalyzed silica synthesis solutions.
View Article and Find Full Text PDFSingle dye molecules incorporated into a mesoporous matrix can act as highly sensitive reporters of their environment. Here, we use single TDI molecules incorporated as guests into hexagonal mesoporous films containing highly structured domains. The dye molecules allow us to map the size of these domains which can extend to over 100 microm.
View Article and Find Full Text PDFNanostructured host-guest materials are important for various applications in nanoscience, and therefore, a thorough understanding of the dynamics of the guest molecules within the host matrix is needed. To this aim we used single-molecule fluorescence techniques to simultaneously examine the spectral and the orientational behavior of single molecules in nanostructured porous host materials. Two types of host-guest systems have been investigated.
View Article and Find Full Text PDFMolecular movement in confined spaces is of broad scientific and technological importance in areas ranging from molecular sieving and membrane separation to active transport through ion channels. Whereas measurements of ensemble diffusion provide information about the overall behaviour of the guest in a porous host, tracking individual molecules provides insight into both the heterogeneity and the mechanistic details of molecular diffusion as well as into the structure of the host. Here, we show how single dye molecules can be used as nanoscale probes to map out the structure of mesoporous silica channel systems prepared as thin films via cooperative self-assembly of surfactant molecules with polymerizable silicate species.
View Article and Find Full Text PDFOriented mesoporous carbon nano-filaments were prepared as replicas of Fe-containing silica mesostructures deposited inside the channels of anodic alumina membranes (AAMs). Due to the confinement imposed by the channels of the AAMs, rather unusual mesophase structures showing "circular" or "columnar" mesoscopic channels were formed that were replicated as pure carbon analogues after removal of the templating hosts. These structures are assembled in the forms of macroscopic membranes and are hierarchically ordered first due to the arrangement of the channels of the AAMs and second due to the mesophase counterparts.
View Article and Find Full Text PDF