Publications by authors named "Barbara Pioselli"

Article Synopsis
  • COPD is a chronic inflammatory lung disease, and there's a need for new anti-inflammatory treatments, particularly those targeting the PI3K pathway, with CHF6523 being an inhaled PI3Kδ inhibitor showing promise in preliminary tests.
  • The study involved 44 patients with stable COPD, using a randomized double-blind design with two treatment phases over 28 days each, to evaluate the safety, tolerability, and pharmacokinetics of CHF6523 compared to a placebo.
  • Results indicated that CHF6523 effectively reduced a key inflammatory marker (PIP) by 29.7% from baseline, with pharmacokinetic data suggesting limited drug accumulation and quick absorption after inhalation.
View Article and Find Full Text PDF
Article Synopsis
  • Therapeutic hypothermia (TH) is now a standard treatment to reduce brain damage in newborns with hypoxic-ischaemic encephalopathy (HIE), but many still face high rates of death and disabilities.
  • CHF6467 is a modified form of nerve growth factor (NGF) that does not cause pain and has shown protective effects on neurons in rodent models when used with hypothermia.
  • This study suggests that combining intranasal administration of CHF6467 with TH significantly reduces brain damage and improves motor and memory function in neonatal HIE, making it a promising treatment option.
View Article and Find Full Text PDF

We report the characterization of potent and selective ROCK inhibitors identified through a core-hopping strategy. A virtual screening workflow, combining ligand- and structure-based methods, was applied on a known series of ROCK inhibitors bearing an acetamido-thiazole scaffold. The most promising replacement of the central core was represented by a benzoazepinone ring, which was selected as a starting point for a subsequent chemical exploration.

View Article and Find Full Text PDF

Background: Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations.

Methods: Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.

View Article and Find Full Text PDF

Pulmonary surfactant (PS) has been proposed as an efficient drug delivery vehicle for inhaled therapies. Its ability to adsorb and spread interfacially and transport different drugs associated with it has been studied mainly by different surface balance designs, typically interconnecting various compartments by interfacial paper bridges, mimicking in vitro the respiratory air-liquid interface. It has been demonstrated that only a monomolecular surface layer of PS/drug is able to cross this bridge.

View Article and Find Full Text PDF

Thiazolidinediones (TZDs) are potent PPARγ agonists that have been shown to attenuate alveolar simplification after prolonged hyperoxia in term rodent models of bronchopulmonary dysplasia. However, the pulmonary outcomes of postnatal TZDs have not been investigated in preterm animal models. Here, we first investigated the PPARγ selectivity, epithelial permeability, and lung tissue binding of three types of TZDs in vitro (rosiglitazone (RGZ), pioglitazone, and DRF-2546), followed by an in vivo study in preterm rabbits exposed to hyperoxia (95% oxygen) to investigate the pharmacokinetics and the pulmonary outcomes of daily RGZ administration.

View Article and Find Full Text PDF

Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome.

View Article and Find Full Text PDF

Direct lung administration of budesonide in combination with surfactant reduces the incidence of bronchopulmonary dysplasia. Although the therapy is currently undergoing clinical development, the lung distribution of budesonide throughout the premature neonatal lung has not yet been investigated. Here, we applied mass spectrometry imaging (MSI) to investigate the surfactant-assisted distal lung distribution of budesonide.

View Article and Find Full Text PDF

CysE and CysK, the last two enzymes of the cysteine biosynthetic pathway, engage in a bienzyme complex, cysteine synthase, with yet incompletely characterized three-dimensional structure and regulatory function. Being absent in mammals, the two enzymes and their complex are attractive targets for antibacterial drugs. We have used hydrogen/deuterium exchange MS to unveil how complex formation affects the conformational dynamics of CysK and CysE.

View Article and Find Full Text PDF

Corticosteroids as budesonide can be effective in reducing topic inflammation processes in different organs. Therapeutic use of budesonide in respiratory diseases, like asthma, chronic obstructive pulmonary disease, and allergic rhinitis is well known. However, the pulmonary distribution of budesonide is not well understood, mainly due to the difficulties in tracing the molecule in lung samples without the addition of a label.

View Article and Find Full Text PDF

Poractant alfa and Calsurf are two natural surfactants widely used in China for the treatment of neonatal respiratory distress syndrome, which are extracted from porcine and calf lungs, respectively. The purpose of this experimental study was to compare their in vitro characteristics and in vivo effects in the improvement of pulmonary function and protection of lung injury. The biophysical properties, ultrastructure, and lipid composition of both surfactant preparations were respectively analysed in vitro by means of Langmuir-Blodgett trough (LBT), atomic force microscopy (AFM), and liquid-chromatography mass-spectrometry (LC-MS).

View Article and Find Full Text PDF

Background: The amount of surfactant deposited in the lungs and its overall pulmonary distribution determine the therapeutic outcome of surfactant replacement therapy. Most of the currently available methods to determine the intrapulmonary distribution of surfactant are time-consuming and require surfactant labelling. Our aim was to assess the potential of Mass Spectrometry Imaging (MSI) as a label-free technique to qualitatively and quantitatively evaluate the distribution of surfactant to the premature lamb.

View Article and Find Full Text PDF

CHF5633 (Chiesi Farmaceutici, Italy) is a synthetic surfactant developed for respiratory distress syndrome replacement therapy in pre-term newborn infants. CHF5633 contains two phospholipids (dipalmitoylphosphatidylcholine and 1-palmitoyl-2oleoyl-sn-glycero-3-phosphoglycerol sodium salt), and peptide analogues of surfactant protein C (SP-C analogue) and surfactant protein B (SP-B analogue). Both proteins are fundamental for an optimal surfactant activity in vivo and SP-B genetic deficiency causes lethal respiratory failure after birth.

View Article and Find Full Text PDF

BackgroundThe intratracheal (IT) administration of budesonide using surfactant as a vehicle has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD) in preterm infants. The objective of this study was to characterize the in vitro characteristics and in vivo safety and efficacy of the extemporaneous combination of budesonide and poractant alfa.MethodsThe stability, minimum surface tension, and viscosity of the preparation were evaluated by means of high-performance liquid chromatography (HPLC), Wilhelmy balance, and Rheometer, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Membrane proteins, which are crucial for many drugs, are challenging to produce due to their tendency to aggregate.
  • Spiders make silk proteins efficiently by using a soluble N-terminal domain (NT) that encapsulates aggregation-prone regions, leading to the idea that NT could help other proteins as well.
  • The engineered charge-reversed mutant NT* significantly enhances the yield and purification of a variety of proteins, making it easier to produce essential compounds like synthetic lung surfactants and improving the process for other difficult-to-express proteins.
View Article and Find Full Text PDF

Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in spontaneously-breathing premature infants with respiratory distress syndrome (RDS). Surfactant administration techniques compatible with nCPAP ventilation strategy are actively investigated. Our aim is to set up and validate a respiratory distress animal model that can be managed on nCPAP suitable for surfactant administration techniques studies.

View Article and Find Full Text PDF

Background: The development of synthetic surfactants for the treatment of lung pulmonary diseases has been going on for many years.

Objectives: To investigate the effects of phospholipid mixtures combined with SP-B and SP-C analogues on lung functions in an animal model of respiratory distress syndrome.

Methods: Natural and synthetic phospholipid mixtures with/without SP-B and/or SP-C analogues were instilled in ventilated premature newborn rabbits.

View Article and Find Full Text PDF

Surfactant protein C (SP-C) is deemed as the surfactant protein most specifically expressed in type II alveolar epithelial cells and plays an important role in surfactant function. SP-C turnover in humans and its meaning in the clinical context have never been approached. In this study, we used mass spectrometry to investigate SP-C turnover in humans.

View Article and Find Full Text PDF

During the last decade, significant technological improvements in mass spectrometry have had a great impact on drug discovery. The development of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) has set a new frontier for the study of the distribution of endogenous and exogenous molecules present within a tissue. MALDI-IMS is a surface sampling technique that allows not only the detection of multiple analytes but also gives the spatial distribution of those analytes.

View Article and Find Full Text PDF

The armory of GFP mutants available to biochemists and molecular biologists is huge. Design and selection of mutants are usually driven by tailored spectroscopic properties, but some key aspects of stability, folding and dynamics of selected GFP variants still need to be elucidated. We have prepared, expressed and characterized three H148 mutants of the highly fluorescent variant GFPmut2.

View Article and Find Full Text PDF

The industrial production of cooked ham from pork meat involves, as initial steps, the injection of brine and a prolonged meat massage. These processes strongly affect the quality of the final product because they determine the breakage of muscle cells and the release of their protein content. The produced dense exudates act as a glue in the final cooked ham.

View Article and Find Full Text PDF

Chemically or genetically modified hemoglobins are a therapeutic class indicated for the treatment of a variety of hypo-oxygenation pathologies, severe trauma-related hemorrhages or elective surgery when blood transfusions are refused or not available. Recombinant heterologous hemoglobins offer the possibility of a potentially unlimited production and genetically optimized properties in terms of oxygen affinity, NO reactivity and resistance to autoxidation. Hemoglobin Polytaur is an autopolymerizing human-bovine hybrid mutant, previously obtained as a 500kDa polymer, shown to reduce the infarct volume from focal cerebral ischemia in in vivo animal models.

View Article and Find Full Text PDF

Intradiol-cleaving catechol 1,2 dioxygenases are Fe(III) dependent enzymes that act on catechol and substituted catechols, including chlorocatechols pollutants, by inserting molecular oxygen in the aromatic ring. Members of this class are the object of intense biochemical investigations aimed at the understanding of their catalytic mechanism, particularly for designing mutants with selected catalytic properties. We report here an in depth investigation of catechol 1,2 dioxygenase IsoB from Acinetobacter radioresistens LMG S13 and its A72G and L69A mutants.

View Article and Find Full Text PDF

Polyethylene glycol (PEG)-conjugated hemoglobins, a novel class of blood substitutes, were investigated by a combination of native and denaturing one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) coupled with the microspectrophotometric characterization of single bands and the functional analysis of electrophoretically separated fractions. For these intrinsically heterogeneous products, the molecular mass, the size distribution, and the degree of PEGylation are strictly correlated to their side effects and, therefore, are crucial pieces of information to evaluate their safety and efficacy. The PEGylation pattern was shown to strongly depend on the quaternary conformation of hemoglobin during the reaction, and the degree of conjugation was shown to correlate with the oxygen binding properties of the individual electrophoretically separated fractions.

View Article and Find Full Text PDF

Here we report for the first time the use of species-specific isotope dilution mass spectrometry for the absolute quantification of a metalloprotein using nondenaturing gel electrophoresis laser ablation inductively coupled plasma mass spectrometry (GE-LA-ICP-MS). The concept utilises the intrinsic metals of the metalloprotein for labelling of the isotopically labelled spike ((65)Cu, (68)Zn SOD). The stability of the metal-protein complex under non-denaturing conditions during 1-D PAGE was confirmed and the performance of the method evaluated.

View Article and Find Full Text PDF