Urotensin-II (U-II) is an endogenous peptide recently characterized as a "nonclassic" pro-angiogenic cytokine. In fact, human vascular endothelial cells express the U-II receptor and exhibit a strong in vitro angiogenic response to the peptide, which was specifically triggered by the binding of U-II to its receptor and involved the activation of ERK1/2 and PI3K/Akt signaling pathways. Moreover, available studies, designed to investigate the pro-angiogenic effect quite shortly following U-II stimulation, suggested that the angiogenic action of the peptide was direct and not associated with an increased expression of vascular endothelial growth factor (VEGF) and/or its receptors.
View Article and Find Full Text PDFThis work investigated the in vitro and in vivo anti-angiogenic activity of some pyrroloazaflavones, exactly 2-phenyl-1H-pyrrolo[2,3-h]quinolin-4(7H)ones, with vinblastine as reference compound. Growth inhibitory activity, migration, and capillary-like structures formation were determined in human umbilical vein endothelial cell cultures, and Matrigel plug assay was carried out to evaluate in vivo effects on angiogenesis. Collectively, our results indicate that some pyrroloazaflavone derivatives, at non-cytotoxic concentrations and like vinblastine are able: (i) to exert in vitro anti-angiogenic activity and (ii) to counteract in vitro and in vivo the pro-angiogenic effects of fibroblast growth factor-2 (FGF-2).
View Article and Find Full Text PDFIntermedin (IMD) is a recently discovered peptide closely related to adrenomedullin. Its principal physiological activity is its role in the regulation of the cardiovascular system, where it exerts a potent hypotensive effect. In addition, data were recently provided showing that this peptide is able to exert a clearcut pro-angiogenic effect both in vitro and in vivo.
View Article and Find Full Text PDFHuman vascular endothelial cells express the urotensin-II (U-II) receptor and exhibit a strong in vitro angiogenic response to the peptide. Thus, in the present study an in vitro model, based on human umbilical vein endothelial cells (HUVEC) cultured on Matrigel, was used to characterize more in detail the signaling pathways that control the pro-angiogenic action of U-II. The activation of the U-II receptor (UT) was associated with an increase of intracellular calcium concentration.
View Article and Find Full Text PDFA recently proposed approach was used to model the self-organization into capillary-like structures of human vascular endothelial cells cultured on Matrigel. The model combines a Cellular Potts Model, considering cell adhesion, cytoskeletal rearrangement and chemotaxis, and a Partial Differential Equation model describing the release and the diffusion of a chemoattractant. The results were compared with the data from real in vitro experiments to establish the capability of the model to accurately reproduce both the spontaneous self-assembly of unstimulated cells and their self-organization in the presence of the pro-angiogenic factor adrenomedullin.
View Article and Find Full Text PDFUrotensin-II (U-II), along its receptor UT, is widely expressed in the cardiovascular system, where it exerts regulatory actions under both physiological and pathological conditions. In the present study, human vascular endothelial cells (EC) from one arterious and three venous vascular beds were used to investigate in vitro their heterogeneity in terms of expression of U-II and UT and of angiogenic response to the peptide. Real-time PCR and immunocytochemistry demonstrated the expression of UT, as mRNA and protein, in all the EC populations investigated.
View Article and Find Full Text PDFArtificial materials and autologous tissues used for esophageal reconstruction often induce complications like stenosis and leakage at long-term follow-up. This study evaluates the possibility to obtain in vitro an implantable tissue-engineered esophagus composed of homologous esophageal acellular matrix and autologous smooth muscle cells (SMCs). Acellular matrices obtained by detergent-enzymatic method did not present any major histocompatibility complex marker and expressed bFGF as protein, showing angiogenic activity in vivo on the chick embryo chorioallantoic membrane (CAM).
View Article and Find Full Text PDF