Publications by authors named "Barbara Nicke"

This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay.

View Article and Find Full Text PDF

The PI3K pathway is one of the most frequently altered signaling pathways in human cancer. In addition to its function in cancer cells, PI3K plays a complex role in modulating anti-tumor immune responses upon immune checkpoint inhibition (ICI). Here, we evaluated the effects of the pan-Class I PI3K inhibitor copanlisib on different immune cell types in vitro and on tumor growth and immune cell infiltration in syngeneic murine cancer models.

View Article and Find Full Text PDF

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death.

View Article and Find Full Text PDF

PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis.

View Article and Find Full Text PDF

The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are involved in metastasis and resistance development, thus affecting anticancer therapy efficacy. The underlying pathways required for CSC maintenance and survival are not fully understood and only a limited number of treatment strategies to specifically target CSCs have been identified. To identify novel CSC targeting compounds, we here set-up an aldehyde dehydrogenase (ALDH)-based phenotypic screening system that allows for an automated and standardized identification of CSCs.

View Article and Find Full Text PDF

Functional RNAi based screening is affected by large numbers of false positive and negative hits due to prevalent sequence based off-target effects. We performed a druggable genome targeting siRNA screen intended to identify novel regulators of E-cadherin (CDH1) expression, a known key player in epithelial mesenchymal transition (EMT). Analysis of primary screening results indicated a large number of false-positive hits.

View Article and Find Full Text PDF

Targeted therapies in personalized medicine require the knowledge about the molecular changes within the patient that cause the disease. With the beginning of the new century, a plethora of new technologies became available to detect these changes and use this information as starting point for drug development. Next-generation genome sequencing and sophisticated genome-wide functional genomics' methods have led to a significant increase in the identification of novel drug target candidates and understanding of the relevance of these genomic and molecular changes for the diseases.

View Article and Find Full Text PDF

Chromosomal instability (CIN) has been implicated in multidrug resistance and the silencing of the ceramide transporter, CERT, promotes sensitization to diverse cytotoxics. An improved understanding of mechanisms governing multidrug sensitization might provide insight into pathways contributing to the death of CIN cancer cells. Using an integrative functional genomics approach, we find that CERT-specific multidrug sensitization is associated with enhanced autophagosome-lysosome flux, resulting from the expression of LAMP2 following CERT silencing in colorectal and HER2(+) breast cancer cell lines.

View Article and Find Full Text PDF

The European Union multi-disciplinary Personalised RNA interference to Enhance the Delivery of Individualised Cytotoxic and Targeted therapeutics (PREDICT) consortium has recently initiated a framework to accelerate the development of predictive biomarkers of individual patient response to anti-cancer agents. The consortium focuses on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mammalian target of rapamycin (mTOR) pathway inhibitor. Through the analysis of tumor tissue derived from pre-operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods to integrate comprehensive tumor-derived genomic data with personalized tumor-derived small hairpin RNA and high-throughput small interfering RNA screens to identify and validate functionally important genomic or transcriptomic predictive biomarkers of individual drug response in patients.

View Article and Find Full Text PDF

Microtubule-stabilizing (MTS) agents, such as taxanes, are important chemotherapeutics with a poorly understood mechanism of action. We identified a set of genes repressed in multiple cell lines in response to MTS agents and observed that these genes are overexpressed in tumors exhibiting chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells.

View Article and Find Full Text PDF

The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules.

View Article and Find Full Text PDF

The sequential use of non cross-resistant cytotoxic agents is the standard of care for advanced solid tumors in order to enhance survival and optimise quality of life. Nevertheless, drug resistance to non cross-resistant agents is commonly witnessed, with clinical response rates to non cross-resistant regimens declining as the disease advances. Expression of ABC transporters is unlikely to fully explain this phenomenon, and a clear molecular explanation for this process remains uncertain.

View Article and Find Full Text PDF

Cytotoxic drug resistance is a major cause of cancer treatment failure. We report an RNA interference screen to identify genes influencing sensitivity of different cancer cell types to chemotherapeutic agents. A set of genes whose targeting leads to resistance to paclitaxel is identified, many of which are involved in the spindle assembly checkpoint.

View Article and Find Full Text PDF

Ras proteins signal through direct interaction with a number of effector enzymes, including type I phosphoinositide (PI) 3-kinases. Although the ability of Ras to control PI 3-kinase has been well established in manipulated cell culture models, evidence for a role of the interaction of endogenous Ras with PI 3-kinase in normal and malignant cell growth in vivo has been lacking. Here we generate mice with mutations in the Pi3kca gene encoding the catalytic p110alpha isoform that block its interaction with Ras.

View Article and Find Full Text PDF

The ability of activated Ras to induce growth arrest of human ovarian surface epithelial (HOSE) cells via induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) has been used to screen for Ras pathway signaling components using a library of RNA interference (RNAi) vectors targeting the kinome. Two known Ras-regulated kinases were identified, phosphoinositide 3-kinase p110alpha and ribosomal protein S6 kinase p70(S6K1), plus the MAP kinase kinase kinase kinase MINK, which had not previously been implicated in Ras signaling. MINK is activated after Ras induction via a mechanism involving reactive oxygen species and mediates stimulation of the stress-activated protein kinase p38 MAPK downstream of the Raf/ERK pathway.

View Article and Find Full Text PDF

The Raf protein kinases are major effectors of Ras GTPases and key components of the transcriptional response to serum factors, acting at least in part through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. It has recently been suggested that Raf also may trigger other as yet uncharacterized signaling pathways. Here, we have used cDNA microarrays to dissect changes in gene expression induced by activation of inducible c-Raf-1 constructs in human mammary epithelial and ovarian epithelial cells.

View Article and Find Full Text PDF

RASSF1A is a recently identified 3p21.3 tumor suppressor gene. The high frequency of epigenetic inactivation of this gene in a wide range of human sporadic cancers including non-small cell lung cancer (NSCLC) and neuroblastoma suggests that RASSF1A inactivation is important for tumor development.

View Article and Find Full Text PDF