Publications by authors named "Barbara Negre"

Cactophilic Drosophila species provide a valuable model to study gene-environment interactions and ecological adaptation. Drosophila buzzatii and Drosophila mojavensis are two cactophilic species that belong to the repleta group, but have very different geographical distributions and primary host plants. To investigate the genomic basis of ecological adaptation, we sequenced the genome and developmental transcriptome of D.

View Article and Find Full Text PDF

Background: Transposable elements (TEs) are a very dynamic component of eukaryotic genomes with important implications (e.g., in evolution) and applications (e.

View Article and Find Full Text PDF

Background: An increasing number of publications demonstrate conservation of function of cis-regulatory elements without sequence similarity. In invertebrates such functional conservation has only been shown for closely related species. Here we demonstrate the existence of an ancient arthropod regulatory element that functions during the selection of neural precursors.

View Article and Find Full Text PDF

Background: Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii.

View Article and Find Full Text PDF

Proneural genes encode transcriptional activators of the basic Helix-loop-helix class that are involved in neuronal specification and differentiation. We have used the recent availability of genome sequences of multiple distant insect species to study the evolution of a family of proneural genes, the achaete-scute genes, and to examine their genomic organization and evolution. We document independent evolution of multiple copies of achaete-scute homologues and argue that this might have contributed to morphological diversity in Diptera and Lepidoptera.

View Article and Find Full Text PDF

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.

View Article and Find Full Text PDF

The conservation of Homeotic (Hox) gene clustering and colinearity in many metazoans indicates that functional constraints operate on this genome organization. However, several studies have questioned its relevance in Drosophila. Here, we analyse the genomic organization of Hox and Hox-derived genes in 13 fruitfly species and the mosquito Anopheles gambiae.

View Article and Find Full Text PDF

Background: It is expected that genes that are expressed early in development and have a complex expression pattern are under strong purifying selection and thus evolve slowly. Hox genes fulfill these criteria and thus, should have a low evolutionary rate. However, some observations point to a completely different scenario.

View Article and Find Full Text PDF

Homeotic (Hox) genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis of metazoans. The mechanistic explanation for this colinearity has been elusive, and it may well be that a single and universal cause does not exist. The Hox-gene complex (HOM-C) has been rearranged differently in several Drosophila species, producing a striking diversity of Hox gene organizations.

View Article and Find Full Text PDF

Hox genes encode transcription factors involved in the specification of segment identity in the early metazoan embryo. These genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis. This conserved genomic organization has suggested the existence of functional constraints acting on the genome organization.

View Article and Find Full Text PDF