Publications by authors named "Barbara Murdoch"

Scorpions represent an ancient lineage of arachnids that have radiated across the globe and are incredibly resilient-since some thrive in harsh environments and can exist on minimal and intermittent feedings. Given the emerging importance of microbiomes to an organism's health, it is intriguing to suggest that the long-term success of the scorpion bauplan may be linked to the microbiome. Little is known about scorpion microbiomes, and what is known, concentrates on the gut.

View Article and Find Full Text PDF

As powerful computational tools and 'big data' transform the biological sciences, bioinformatics training is becoming necessary to prepare the next generation of life scientists. Furthermore, because the tools and resources employed in bioinformatics are constantly evolving, bioinformatics learning materials must be continuously improved. In addition, these learning materials need to move beyond today's typical step-by-step guides to promote deeper conceptual understanding by students.

View Article and Find Full Text PDF

Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues.

View Article and Find Full Text PDF

Lifelong neurogenesis in the mouse olfactory epithelium (OE) is regulated by the response of stem/progenitor cells to local signals, but embryonic and adult OE progenitors appear to be quite different--with potentially different mechanisms of regulation. A recently identified progenitor unique to embryonic OE--the nestin+ radial glial-like progenitor--precedes some Mash1+ progenitors in the olfactory receptor neuron (ORN) lineage, which then gives rise to immediate neuronal precursors and immature ORNs. Neurogenic drive at each stage is governed largely by exogenous factors.

View Article and Find Full Text PDF

Background: Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos.

View Article and Find Full Text PDF

Prolonged neurogenesis driven by stem/progenitor cells is a hallmark of the olfactory epithelium (OE), beginning at the placodal stages in the embryo and continuing throughout adult life. Despite the progress made to identify and study the regulation of adult OE progenitors, our knowledge of embryonic OE precursors and their cellular contributions to the adult OE has been stalled by the lack of markers able to distinguish individual candidate progenitors. Here we identify embryonic OE Pax7+ progenitors, detected at embryonic day 10.

View Article and Find Full Text PDF

Persistent neurogenesis is maintained throughout development and adulthood in the mouse olfactory epithelium (OE). Despite this, the identity and origin of different embryonic OE progenitors, their spatiotemporal induction and contribution to patterning during development, has yet to be delineated. Here, we show that the embryonic OE contains a novel nestin-expressing radial glia-like progenitor (RGLP) that is not found in adult OE, which is antigenically distinct from embryonic CNS radial glia.

View Article and Find Full Text PDF

The rodent olfactory epithelium (OE) is capable of prolonged neurogenesis, beginning at E10 in the embryo and continuing throughout adulthood. Significant progress has been made over the last 10 years in revealing the signals that drive induction, differentiation and survival of its Olfactory Receptor Neurons (ORNs). Our understanding of the identity of specific progenitors or precursors that respond to these signals is, however, less well developed, and the search is still on for the elusive, definitive multipotent neuro-glial OE "Stem cell".

View Article and Find Full Text PDF

The murine olfactory epithelium (OE) generates olfactory receptor neurons (ORNs) throughout development and into adulthood, but only a few of the factors regulating olfactory neuro- and glio-genesis have been delineated. Notch receptors maintain CNS neuronal progenitors and drive glial differentiation, and the Notch effectors Hes 1 and 5 are expressed in the OE, but the Notch receptors that stimulate Hes gene activation in defined lineages during OE development have not been determined. Here, we first use RT-PCR to reveal which Notch receptors and ligands are expressed in the developing and adult OE.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) randomly differentiate into multiple cell types during embryoid body (EB) development. To date, characterization of specific factors capable of influencing hematopoietic cell fate from hESCs remains elusive. Here, we report that the treatment of hESCs during EB development with a combination of cytokines and bone morphogenetic protein-4 (BMP-4), a ventral mesoderm inducer, strongly promotes hematopoietic differentiation.

View Article and Find Full Text PDF

Human hematopoietic stem cells are defined by their ability to repopulate multiple hematopoietic lineages in the bone marrow of transplanted recipients and therefore are functionally distinct from hematopoietic progenitors detected in vitro. Although factors capable of regulating progenitors are well established, in vivo regulators of hematopoietic repopulating function are unknown. By using a member of the vertebrate Wnt family, Wnt-5A, the proliferation and differentiation of progenitors cocultured on stromal cells transduced with Wnt-5A or treated with Wnt-5A conditioned medium (CM) was unaffected.

View Article and Find Full Text PDF

Using in vitro progenitor assays, serum-free in vitro cultures, and the nonobese diabetic/severe combined immune-deficient (NOD/SCID) ecotropic murine virus knockout xenotransplantation model to detect human SCID repopulating cells (SRCs) with multilineage reconstituting function, we have characterized and compared purified subpopulations harvested from the peripheral blood (PB) of patients receiving granulocyte colony-stimulating factor (G-CSF) alone or in combination with stem cell factor (SCF). Mobilized G-CSF plus SCF PB showed a 2-fold increase in total mononuclear cell content and a 5-fold increase in CD34-expressing cells depleted for lineage-marker expression (CD34(+)Lin(-)) as compared with patients treated with G-CSF alone. Functionally, G-CSF plus SCF-mobilized CD34(+)CD38(-)Lin(-) cells contained a 2-fold enhancement in progenitor frequency as compared with G-CSF-mobilized subsets.

View Article and Find Full Text PDF

Objective: We have previously identified a novel circulating embryonic blood cell capable of pluripotent hematopoietic reconstitution, which may serve as a target for in utero stem cell therapy. Based on its unique biological properties and ontogenic origin, we aim to examine the ability to maintain and retrovirally transduce fetal blood (FB) reconstituting cells in ex vivo culture conditions previously optimized for pluripotent hematopoietic repopulating cells derived from later stages of human ontogeny.

Methods: FB cells were evaluated for proliferative potential, progenitor composition, and SCID-repopulating cell (SRC) capacity before and after 3 days of serum free (SF) ex vivo culture using the previously optimized growth factor conditions of SCF, Flt-3L, IL-3, IL-6, and G-CSF (GF Mix), in comparison to cultures using GF Mix + oncostatin M (OSM), or SCF + Flt-3L.

View Article and Find Full Text PDF

Primitive human hematopoietic cells have recently been identified within a rare subfraction of CD34(-) lineage-depleted (Lin(-)) cells and further characterized by their restriction to a rarer subset expressing AC133. Here we show that CD34(-)AC133(+)Lin(-) cells can be transduced by retrovirus at a comparatively higher efficiency than either CD34(-)AC133(-)Lin(-) or CD34(+)CD38(-)Lin(-) cells. Subpopulations were transduced by enhanced green fluorescent protein (eGFP)-containing retrovirus in serum-free conditions.

View Article and Find Full Text PDF