Publications by authors named "Barbara Mulloy"

Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In , glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway.

View Article and Find Full Text PDF

In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose.

View Article and Find Full Text PDF

Despite their many important physiological functions, past work on the diverse sequences of human milk oligosaccharides (HMOs) has been focused mainly on the highly abundant HMOs with a relatively low degree of polymerization (DP) due to the lack of efficient methods for separation/purification and high-sensitivity sequencing of large-sized HMOs with DP ≥ 10. Here we established an ultrahigh-temperature preparative HPLC based on a porous graphitized carbon column at up to 145 °C to overcome the anomeric α/β splitting problem and developed further the negative-ion ESI-CID-MS/MS into multistage MS using a combined product-ion scanning of singly charged molecular ion and doubly charged fragment ion of the branching Gal and adjacent GlcNAc residues. The separation and sequencing method allows efficient separation of a neutral fraction with DP ≥ 10 into 70 components, among which 17 isomeric difucosylated nona- and decasaccharides were further purified and sequenced.

View Article and Find Full Text PDF

Sepsis is a life-threatening hyperreaction to infection in which excessive inflammatory and immune responses cause damage to host tissues and organs. The glycosaminoglycan heparan sulphate (HS) is a major component of the cell surface glycocalyx. Cell surface HS modulates several of the mechanisms involved in sepsis such as pathogen interactions with the host cell and neutrophil recruitment and is a target for the pro-inflammatory enzyme heparanase.

View Article and Find Full Text PDF

Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity.

View Article and Find Full Text PDF

Heparin is an essential anticoagulant used for treating and preventing thrombosis. However, the complexity of heparin has hindered the development of a recombinant source, making its supply dependent on a vulnerable animal population. In nature, heparin is produced exclusively in mast cells, which are not suitable for commercial production, but mastocytoma cells are readily grown in culture and make heparan sulfate, a closely related glycosaminoglycan that lacks anticoagulant activity.

View Article and Find Full Text PDF

A multigene polysaccharide utilization locus (PUL) encoding enzymes and surface carbohydrate (glycan)-binding proteins (SGBPs) was recently identified in prominent members of in the human gut and characterized in Bacteroides ovatus. This PUL-encoded system specifically targets mixed-linkage β1,3-1,4-glucans, a group of diet-derived carbohydrates that promote a healthy microbiota and have potential as prebiotics. The BoSGBP-A protein encoded by the gene is a SusD-like protein that plays a key role in the PUL's specificity and functionality.

View Article and Find Full Text PDF

Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are sulfated glycans of complex structure and multiple biological actions. They are composed of disaccharide repeating units of alternating uronic acid/galactose and hexosamine. Sulfation patterns are an additional structural variation of these polymers.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are important biopolymers that differ in the sequence of saccharide units and in post polymerisation alterations at various positions, making these complex molecules challenging to analyse. Here we describe an approach that enables small quantities (<200 ng) of over 400 different GAGs to be analysed within a short time frame (3-4 h). Time of flight secondary ion mass spectrometry (ToF-SIMS) together with multivariate analysis is used to analyse the entire set of GAG samples.

View Article and Find Full Text PDF

Cytotoxic and pro-inflammatory histones are present in neutrophil extracellular traps (NETs) and are elevated in blood in several inflammatory conditions, sepsis being a major example. Compounds which can attenuate activities of histones are therefore of interest, with heparin being one such material that has previously been shown to bind to histones. Heparin, a successful anticoagulant for nearly a century, has been shown experimentally to bind to histones and exhibit a protective effect in inflammatory conditions.

View Article and Find Full Text PDF

During screening for novel emulsifiers and surfactants, a marine gammaproteobacterium, Halomonas sp. MCTG39a, was isolated and selected for its production of an extracellular emulsifying agent, P39a. This polymer was produced by the new isolate during growth in a modified Zobell's 2216 medium amended with 1% glucose, and was extractable by cold ethanol precipitation.

View Article and Find Full Text PDF
Article Synopsis
  • The lipopolysaccharide O-antigen structure in European Helicobacter pylori strain G27 includes a trisaccharide, a glucan-heptan, and Lewis antigens essential for immune evasion, but the biosynthetic pathway is not fully understood.
  • Systematic mutagenesis and structural analysis identified key glycosyltransferase genes (HP0102, HP1283, HP1578) involved in synthesizing components of the lipopolysaccharide, with significant variations observed in East-Asian H. pylori strains.
  • The absence of certain genes (HP1283/HP1578) in East-Asian strains raises questions about their role in gastric cancer pathogenesis and suggests a need for further investigation
View Article and Find Full Text PDF

Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating -acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions.

View Article and Find Full Text PDF

Glycan antigens recognized by monoclonal antibodies have served as stem cell markers. To understand regulation of their biosynthesis and their roles in stem cell behavior precise assignments are required. We have applied state-of-the-art glycan array technologies to compare the glycans bound by five antibodies that recognize carbohydrates on human stem cells.

View Article and Find Full Text PDF

Heparin, the widely used anticoagulant and antithrombotic polysaccharide, has other potential therapeutic uses that arise from its similarity to heparan sulfate. This review provides a brief overview of the most recent developments in this field, paying particular respect to pulmonary and respiratory pharmacology. It has often been said that heparin, with its mimetics and derivatives, shows great promise in the treatment of inflammatory, infectious, and malignant conditions.

View Article and Find Full Text PDF

Glycans play important roles in a variety of biological processes. Their activities are closely related to the fine details of their structures. Unlike the simple linear chains of proteins, branching is a unique feature of glycan structures, making their identification extremely challenging.

View Article and Find Full Text PDF

A distinctive feature of the Deepwater Horizon (DwH) oil spill was the formation of significant quantities of marine oil snow (MOS), for which the mechanism(s) underlying its formation remain unresolved. Here, we show that Alteromonas strain TK-46(2), Pseudoalteromonas strain TK-105 and Cycloclasticus TK-8 - organisms that became enriched in sea surface oil slicks during the spill - contributed to the formation of MOS and/or dispersion of the oil. In roller-bottle incubations, Alteromonas cells and their produced EPS yielded MOS, whereas Pseudoalteromonas and Cycloclasticus did not.

View Article and Find Full Text PDF

We have previously shown that the heterodimeric cytokine interleukin-12, and the homodimer of its larger subunit p40, both bind to heparin and heparan sulfate with relatively high affinity. In the present study we characterised these interactions using a series of chemically modified heparins as competitive inhibitors. Human interleukin-12 and p40 homodimer show indistinguishable binding profiles with a panel of heparin derivatives, but that of murine interleukin-12 is distinct.

View Article and Find Full Text PDF

Gangliosides, as plasma membrane-associated sialylated glycolipids, are antigenic structures and they serve as ligands for adhesion proteins of pathogens, for toxins of bacteria, and for endogenous proteins of the host. The detectability by carbohydrate-binding proteins of glycan antigens and ligands on glycolipids can be influenced by the differing lipid moieties. To investigate glycan sequences of gangliosides as recognition structures, we have underway a program of work to develop a "gangliome" microarray consisting of isolated natural gangliosides and neoglycolipids (NGLs) derived from glycans released from them, and each linked to the same lipid molecule for arraying and comparative microarray binding analyses.

View Article and Find Full Text PDF

In this editorial to MDPI special issue "" we describe in outline the common structural features of glycosaminoglycans and the characteristics of proteoglycans, including the intracellular proteoglycan, serglycin, cell-surface proteoglycans, like syndecans and glypicans, and the extracellular matrix proteoglycans, like aggrecan, perlecan, and small leucine-rich proteoglycans. The context in which the pharmaceutical uses of glycosaminoglycans and proteoglycans are presented in this special issue is given at the very end.

View Article and Find Full Text PDF

In a collaborative study involving six laboratories in the USA, Europe, and India the molecular weight distributions of a panel of heparin sodium samples were determined, in order to compare heparin sodium of bovine intestinal origin with that of bovine lung and porcine intestinal origin. Porcine samples met the current criteria as laid out in the USP Heparin Sodium monograph. Bovine lung heparin samples had consistently lower average molecular weights.

View Article and Find Full Text PDF

Current therapeutic unfractionated heparin available in Europe and US is of porcine mucosal origin. There is now interest, specifically in the US, to use bovine mucosa as an additional source for the production of heparin. The anticoagulant action of heparin can be neutralized by protamine sulfate, and in this study the ability of protamine to bind and neutralize the anticoagulant activities of heparin from porcine mucosa, bovine mucosa and bovine lung were assessed.

View Article and Find Full Text PDF