Publications by authors named "Barbara Muhlemann"

Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.

View Article and Find Full Text PDF

Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus.

View Article and Find Full Text PDF
Article Synopsis
  • MERS-CoV is a virus found in dromedary camels on the Arabian Peninsula, which can occasionally infect humans, but its diversity has been under-studied, especially during the COVID-19 pandemic.
  • A study conducted from November 2023 to January 2024 collected 558 camel swab samples in Saudi Arabia, revealing that 39% tested positive for MERS-CoV RNA, with sequencing of 42 MERS-CoVs and other related coronaviruses.
  • The genetic analysis showed that MERS-CoV sequences were closely related to the B5 lineage and had unique characteristics, highlighting the need for further study to assess their public health implications and potential for human transmission.
View Article and Find Full Text PDF

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants.

View Article and Find Full Text PDF

Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.

View Article and Find Full Text PDF

Background: Evolving SARS-CoV-2 variants and changing levels of pre-existing immunity require re-evaluation of antigen-detecting rapid diagnostic test (Ag-RDT) performance. We investigated possible associations between Ag-RDT sensitivity and various potential influencing factors, such as immunisation status and viral variant, in symptomatic hospital employees.

Methods: In this observational study, RT-PCR, Ag-RDT, and symptom-specific data were collected at three SARS-CoV-2 test centres for employees of the Charité-Universitätsmedizin Berlin hospital (Berlin, Germany).

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on monitoring the evolution of SARS-CoV-2 variants to assess their ability to evade immune responses, emphasizing the importance of different neutralization assays and various serum samples.
  • - Comparisons were made among datasets using human, hamster, and mouse serum, revealing that animal models, especially hamsters, generally yielded higher neutralization titers than human samples, while showing consistent patterns across assays.
  • - The findings suggest a shift in SARS-CoV-2 surveillance strategies from relying solely on human serum from first infections to incorporating serum from animal models, particularly hamsters, for more reliable results.
View Article and Find Full Text PDF

Background: Intrinsic fitness costs are likely to have guided the selection of lineage-determining mutations during emergence of variants of SARS-CoV-2. Whereas changes in receptor affinity and antibody neutralization have been thoroughly mapped for individual mutations in spike, their influence on intrinsic replicative fitness remains understudied.

Methods: We analyzed mutations in immunodominant spike epitope E484 that became temporarily fixed over the pandemic.

View Article and Find Full Text PDF

Background: Healthcare workers (HCWs) have experienced high rates of coronavirus disease 2019 (COVID-19) morbidity and mortality. We estimated COVID-19 2-dose primary series and monovalent booster vaccine effectiveness (VE) against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (BA.1 and BA.

View Article and Find Full Text PDF

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays.

View Article and Find Full Text PDF
Article Synopsis
  • * Out of 1582 enrolled HCWs, about 66% had received two doses of CoronaVac, with a total of 72 PCR-positive infections detected during the study.
  • * The vaccine's effectiveness was found to be low, with point estimates indicating it provided protection for about 29-39% of vaccinated HCWs, highlighting the need for more precise evaluations and possibly additional vaccination strategies.
View Article and Find Full Text PDF
Article Synopsis
  • - The study analyzed how different variants of SARS-CoV-2 affect immunity, focusing on 21 variants and how they interact with immune responses from people previously infected or vaccinated.
  • - Researchers used a technique called antigenic cartography to identify significant differences in the spike protein of pre-Omicron variants, noting key positions that show variability related to immunity.
  • - They observed that immunity increases notably 4 weeks to over 3 months after the second vaccine dose, and that the initial variant exposure impacts which parts of the spike protein the immune system focuses on, highlighting considerations for future vaccine strategies.
View Article and Find Full Text PDF

Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV.

View Article and Find Full Text PDF
Article Synopsis
  • Healthcare workers in Albania faced significant risks from COVID-19, prompting a study assessing vaccine effectiveness over nearly a year.
  • The study enrolled 1504 healthcare workers, revealing a vaccine effectiveness (VE) of 65.1% against COVID-19 and varying effectiveness levels based on prior infections.
  • The findings suggest that vaccination is important for healthcare workers, especially those with past infections, reinforcing the need for ongoing vaccination efforts in Albania.
View Article and Find Full Text PDF

Glycoprotein 90K, encoded by the interferon-stimulated gene LGALS3BP, displays broad antiviral activity. It reduces HIV-1 infectivity by interfering with Env maturation and virion incorporation, and increases survival of Influenza A virus-infected mice via antiviral innate immune signaling. Its antiviral potential in SARS-CoV-2 infection remains largely unknown.

View Article and Find Full Text PDF

Adenoviruses (AdVs) are important human and animal pathogens and are frequently used as vectors for gene therapy and vaccine delivery. Surprisingly, there are only scant data regarding primate AdV origin and evolution, especially in the most basal primate hosts. We detect and sequence AdVs from faeces of two Madagascan lemur species.

View Article and Find Full Text PDF
Article Synopsis
  • Since late 2020, new SARS-CoV-2 variants have frequently appeared, showing differences that may help them evade immunity from past infections.
  • The Early Detection group within the NIH's SARS-CoV-2 program utilizes bioinformatics to track these variants' emergence, spread, and traits, highlighting important ones for further study.
  • Since April 2021, this group has successfully prioritized variants each month, assisting NIH researchers by providing timely data on SARS-CoV-2 evolution for guiding experiments.
View Article and Find Full Text PDF

Background: The pathogen landscape in the Early European Middle Ages remains largely unexplored. Here, we perform a systematic pathogen screening of the rural community Lauchheim "Mittelhofen," in present-day Germany, dated to the Merovingian period, between fifth and eighth century CE. Skeletal remains of individuals were subjected to an ancient DNA metagenomic analysis.

View Article and Find Full Text PDF

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination.

View Article and Find Full Text PDF

SARS-CoV-2 Mu variant emerged in Colombia in 2021 and spread globally. In 49 serum samples from vaccinees and COVID-19 survivors in Colombia, neutralization was significantly lower (p<0.0001) for Mu than a parental strain and variants of concern.

View Article and Find Full Text PDF

Purpose: Six to 19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions.

Methods: We analyzed sera of 430 COVID-19 patients from four hospitals for presence of IFN-AABs by ELISA.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of new SARS-CoV-2 variants threatens the effectiveness of immunity from previous infections or vaccinations.
  • To tackle this issue, the NIH launched the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program for real-time assessment of variant risks that might impact transmission and vaccine efficacy.
  • The program focuses on gathering and analyzing data on emerging variants and their effects on immunity, using animal models, while also addressing future challenges in monitoring rapidly evolving viruses.
View Article and Find Full Text PDF

Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.

View Article and Find Full Text PDF

Background: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing.

View Article and Find Full Text PDF