Commonly known in macroscale mechanics, buckling phenomena are now also encountered in the nanoscale world as revealed in today's cutting-edge fabrication of microelectronics. The description of nanoscale buckling requires precise dimensional and elastic moduli measurements, as well as a thorough understanding of the relationships between stresses in the system and the ensuing morphologies. Here, we analyze quantitatively the buckling mechanics of organosilicate fins that are capped with hard masks in the process of lithographic formation of deep interconnects.
View Article and Find Full Text PDF