Transcription factors (TFs) are important mediators of aberrant transcriptional programs in cancer cells. In this study, we focus on TF activity (TFa) as a biomarker for cell-line-selective anti-proliferative effects, in that high TFa predicts sensitivity to loss of function of a given gene (i.e.
View Article and Find Full Text PDFClinical effectiveness of KRAS G12C inhibitors (G12Cis) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. We found that targeting proximal receptor tyrosine kinase (RTK) signaling using the SOS1 inhibitor (SOS1i) BI-3406 both enhanced the potency of and delayed resistance to G12Ci treatment, but the extent of SOS1i effectiveness was modulated by both SOS2 expression and the specific mutational landscape. SOS1i enhanced the efficacy of G12Ci and limited rebound RTK/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels.
View Article and Find Full Text PDFCohesin-mediated loop extrusion has been shown to be blocked at specific cis-elements, including CTCF sites, producing patterns of loops and domain boundaries along chromosomes. Here we explore such cis-elements, and their role in gene regulation. We find that transcription termination sites of active genes form cohesin- and RNA polymerase II-dependent domain boundaries that do not accumulate cohesin.
View Article and Find Full Text PDFTargeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules.
View Article and Find Full Text PDFGenetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) have the capacity for self-renewal and differentiation into most cell types and, in contrast to widely used cell lines, are karyotypically normal and non-transformed. Hence, hPSCs are considered the gold-standard system for modelling diseases, especially in the field of regenerative medicine. Despite widespread research use of hPSCs and induced pluripotent stem cells (iPSCs), the systematic understanding of pluripotency and lineage differentiation mechanisms are still incomplete.
View Article and Find Full Text PDFWe introduce Digital microfluidic Isolation of Single Cells for -Omics (DISCO), a platform that allows users to select particular cells of interest from a limited initial sample size and connects single-cell sequencing data to their immunofluorescence-based phenotypes. Specifically, DISCO combines digital microfluidics, laser cell lysis, and artificial intelligence-driven image processing to collect the contents of single cells from heterogeneous populations, followed by analysis of single-cell genomes and transcriptomes by next-generation sequencing, and proteomes by nanoflow liquid chromatography and tandem mass spectrometry. The results described herein confirm the utility of DISCO for sequencing at levels that are equivalent to or enhanced relative to the state of the art, capable of identifying features at the level of single nucleotide variations.
View Article and Find Full Text PDFGenome-scale functional genetic screens are used to identify key genetic regulators of a phenotype of interest. However, the identification of genetic modifications that lead to a phenotypic change requires sorting large numbers of cells, which increases operational times and costs and limits cell viability. Here, we introduce immunomagnetic cell sorting facilitated by a microfluidic chip as a rapid and scalable high-throughput method for loss-of-function phenotypic screening using CRISPR-Cas9.
View Article and Find Full Text PDFA recent study by Haapaniemi et al (2018) reported that intact p53 signaling hampers CRISPR-based functional genomic screens. Brown et al report good performance of genome-scale screens in TP53 wild-type cells and reiterate best practices for CRISPR screening.
View Article and Find Full Text PDFThe genotype-to-phenotype relationship in health and disease is complex and influenced by both an individual's environment and their unique genome. Personal genetic variants can modulate gene function to generate a phenotype either through a single gene effect or through genetic interactions involving two or more genes. The relevance of genetic interactions to disease phenotypes has been particularly clear in cancer research, where an extreme genetic interaction, synthetic lethality, has been exploited as a therapeutic strategy.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) provide an invaluable tool for modeling diseases and hold promise for regenerative medicine. For understanding pluripotency and lineage differentiation mechanisms, a critical first step involves systematically cataloging essential genes (EGs) that are indispensable for hPSC fitness, defined as cell reproduction in this study. To map essential genetic determinants of hPSC fitness, we performed genome-scale loss-of-function screens in an inducible Cas9 H1 hPSC line cultured on feeder cells and laminin to identify EGs.
View Article and Find Full Text PDFGenetic interactions identify combinations of genetic variants that impinge on phenotype. With whole-genome sequence information available for thousands of individuals within a species, a major outstanding issue concerns the interpretation of allelic combinations of genes underlying inherited traits. In this Review, we discuss how large-scale analyses in model systems have illuminated the general principles and phenotypic impact of genetic interactions.
View Article and Find Full Text PDFHistone lysine demethylases (KDMs) are of critical importance in the epigenetic regulation of gene expression, yet there are few selective, cell-permeable inhibitors or suitable tool compounds for these enzymes. We describe the discovery of a new class of inhibitor that is highly potent towards the histone lysine demethylases KDM2A/7A. A modular synthetic approach was used to explore the chemical space and accelerate the investigation of key structure-activity relationships, leading to the development of a small molecule with around 75-fold selectivity towards KDM2A/7A versus other KDMs, as well as cellular activity at low micromolar concentrations.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer deaths, and effective treatments are urgently needed. Loss-of-function mutations in the DNA damage response kinase ATM are common in lung adenocarcinoma but directly targeting these with drugs remains challenging. Here we report that ATM loss-of-function is synthetic lethal with drugs inhibiting the central growth factor kinases MEK1/2, including the FDA-approved drug trametinib.
View Article and Find Full Text PDFPatterns of somatic mutations in cancer genes provide information about their functional role in tumourigenesis, and thus indicate their potential for therapeutic exploitation. Yet, the classical distinction between oncogene and tumour suppressor may not always apply. For instance, TP53 has been simultaneously associated with tumour suppressing and promoting activities.
View Article and Find Full Text PDFSome mutations in cancer cells can be exploited for therapeutic intervention. However, for many cancer subtypes, including triple-negative breast cancer (TNBC), no frequently recurring aberrations could be identified to make such an approach clinically feasible. Characterized by a highly heterogeneous mutational landscape with few common features, many TNBCs cluster together based on their 'basal-like' transcriptional profiles.
View Article and Find Full Text PDFEpigenetic deregulation is a hallmark of cancer, and there has been increasing interest in therapeutics that target chromatin-modifying enzymes and other epigenetic regulators. The rationale for applying epigenetic drugs to treat cancer is twofold. First, epigenetic changes are reversible, and drugs could therefore be used to restore the normal (healthy) epigenetic landscape.
View Article and Find Full Text PDFThe process of tRNA splicing entails removal of an intron by TSEN (tRNA-splicing endonuclease) and ligation of the resulting exon halves to generate functional tRNAs. In mammalian cells, the RNA kinase CLP1 (cleavage and polyadenylation factor I subunit) associates with TSEN and phosphorylates the 3' exon at the 5' end in vitro, suggesting a role for CLP1 in tRNA splicing. Interestingly, recent data suggest that the ATP-binding and/or hydrolysis capacity of CLP1 is required to enhance pre-tRNA cleavage.
View Article and Find Full Text PDFCLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1(K/K)) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure.
View Article and Find Full Text PDFAlthough visual feedback (i.e. seeing our hand while we move it) improves the accuracy and efficiency of grasping movements, these positive effects of visual feedback are not consistently found for catching.
View Article and Find Full Text PDF