Contrary to the adult central nervous system, the peripheral nervous system has an intrinsic ability to regenerate that relies on the expression of regeneration-associated genes, such as some kinesin family members. Kinesins contribute to nerve regeneration through the transport of specific cargo, such as proteins and membrane components, from the cell body towards the axon periphery. We show here that KIF4A, associated with neurodevelopmental disorders and previously believed to be only expressed during development, is also expressed in the adult vertebrate nervous system and up-regulated in injured peripheral nervous system cells.
View Article and Find Full Text PDFBioelectronic bone implants are being widely recognized as a promising technology for highly personalized bone/implant interface sensing and biophysical therapeutic stimulation. Such bioelectronic devices are based on an innovative concept with the ability to be applied to a wide range of implants, including in fixation and prosthetic systems. Recently, biointerface sensing using capacitive patterns was proposed to overcome the limitations of standard imaging technologies and other non-imaging technologies; moreover, electric stimulation using capacitive patterns was proposed to overcome the limitations of non-instrumented implants.
View Article and Find Full Text PDFIn a great partnership, the Federation of European Neuroscience Societies (FENS) and the Hertie Foundation organized the FENS-Hertie 2022 Winter School on 'Neuro-immune interactions in health and disease'. The school selected 27 PhD students and 13 postdoctoral fellows from 20 countries and involved 14 faculty members experts in the field. The Winter School focused on a rising field of research, the interactions between the nervous and both innate and adaptive immune systems under pathological and physiological conditions.
View Article and Find Full Text PDFNeural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is explored.
View Article and Find Full Text PDFSpinal cord injury (SCI) is an as yet untreatable neuropathology that causes severe dysfunction and disability. Cell-based therapies hold neuroregenerative and neuroprotective potential, but, although being studied in SCI patients for more than two decades, long-term efficacy and safety remain unproven, and which cell types result in higher neurological and functional recovery remains under debate. In a comprehensive scoping review of 142 reports and registries of SCI cell-based clinical trials, we addressed the current therapeutical trends and critically analysed the strengths and limitations of the studies.
View Article and Find Full Text PDFFabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms.
View Article and Find Full Text PDFReplacement orthopedic surgeries are among the most common surgeries worldwide, but clinically used passive implants cannot prevent failure rates and inherent revision arthroplasties. Optimized non-instrumented implants, resorting to preclinically tested bioactive coatings, improve initial osseointegration but lack long-term personalized actuation on the bone-implant interface. Novel bioelectronic devices comprising biophysical stimulators and sensing systems are thus emerging, aiming for long-term control of peri-implant bone growth through biointerface monitoring.
View Article and Find Full Text PDF