Objective: The mitochondrial unfolded protein response (UPR) is an adaptive cellular response to stress to ensure mitochondrial proteostasis and function. Here we explore the capacity of physical exercise to induce UPR in the skeletal muscle.
Methods: Therefore, we combined mouse models of exercise (swimming and treadmill running), pharmacological intervention, and bioinformatics analyses.
Cell Mol Life Sci
April 2023
Objective: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet.
View Article and Find Full Text PDFDysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-β hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown.
View Article and Find Full Text PDFThe maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPR) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPR in hypothalamic cells are unclear.
View Article and Find Full Text PDFGeroscience
June 2021
The impairment of mitochondrial metabolism is a hallmark of aging. Mitonuclear imbalance and the mitochondrial unfolded protein response (UPRmt) are two conserved mitochondrial mechanisms that play critical roles in ensuring mitochondrial proteostasis and function. Here, we combined bioinformatics, physiological, and molecular analyses to examine the role of mitonuclear imbalance and UPRmt in the skeletal muscle of aged rodents and humans.
View Article and Find Full Text PDFTRB3, a mammalian homolog of Drosophila tribbles, plays an important role in multiple tissues and it has been implicated in stress response regulation and metabolic control. However, the role of hepatic TRB3 and its relationship with endoplasmic reticulum stress (ER stress) during aging has not been elucidated. Thus, the present study aimed to explore the association of aging with TRB3 and ER stress on the hepatic glucose production in Wistar rats.
View Article and Find Full Text PDFThe impairment of the mitochondrial functions is a hallmark of aging. During aging, there is a downregulation of two mechanisms strictly associated with mitochondrial integrity, including the mitonuclear imbalance (eg, imbalance in mitochondrial- versus nuclear-encoded mitochondrial proteins) and the mitochondrial unfolded protein response (UPRmt). Here, we evaluated the effects of aerobic exercise in the mitonuclear imbalance and UPRmt markers in the skeletal muscle of old mice.
View Article and Find Full Text PDFPurpose: Nicotinamide riboside (NR) acts as a potent NAD precursor and improves mitochondrial oxidative capacity and mitochondrial biogenesis in several organisms. However, the effects of NR supplementation on aerobic performance remain unclear. Here, we evaluated the effects of NR supplementation on the muscle metabolism and aerobic capacity of sedentary and trained mice.
View Article and Find Full Text PDFAdiponectin is an adipokine that acts in the control of energy homeostasis. The adaptor protein containing the pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1) is a key protein in the adiponectin signaling. The APPL1 mediates a positive effect on the insulin signaling through the interaction with the phosphoinositide 3-kinase (PI3K).
View Article and Find Full Text PDFAims: Nicotinamide Riboside (NR) is a NAD booster with wide physiological repercussion including the improvement on glucose and lipid homeostasis, increasing the life expectancy in mammals. However, the effects of NR on metabolism are only partially known. Here, we evaluated the effects of NR on the thermogenic response, highlighting the brown adipose tissue (BAT) in lean mice.
View Article and Find Full Text PDFAims: Sestrins, a class of stress-related proteins, is involved in the control of aging-induced organic dysfunctions and metabolic control. However, the factors that modulate the levels of Sestrins are poorly studied. Here, we evaluated the effects of acute and chronic aerobic exercise on Sestrin 1 (Sesn1) and Sesn2 protein contents in the skeletal muscle of mice.
View Article and Find Full Text PDFThe effects of physical exercise on insulin signaling and glycemic homeostasis are not yet fully understood. Recent findings elucidated the positive role of Rho-kinase (Rock) in increasing the glucose uptake through insulin receptor substrate-1 (IRS1) phosphorylation in the skeletal muscle. Here, we explored the effects of short-term exercise on Rock activity and insulin signaling.
View Article and Find Full Text PDFMitogen-activated Protein Kinase Phosphatase 3 (MKP-3) has been involved in the negative regulation of insulin signaling. The absence of MKP-3 is also associated with reduced adiposity, increased energy expenditure and improved insulin sensitivity. The MKP-3 is known as the main Erk1/2 phosphatase and FoxO1 activator, which has repercussions on the gluconeogenesis pathway and hyperglycemia in obese mice.
View Article and Find Full Text PDFSestrins and autophagy deficiencies are associated with several aging-related organic dysfunctions and metabolic disorders. Here we evaluate the effects of acute exercise on Sestrin 2 (Sesn2) protein content and autophagy markers in the skeletal muscle of experimental models of aging. Twenty-four months-old C57BL/6J male mice were submitted to a single bout of swimming exercise and the gastrocnemius muscle was evaluated by Western blot.
View Article and Find Full Text PDFThe present study evaluated the effects of exercise training on pyruvate carboxylase protein (PCB) levels in hepatic tissue and glucose homeostasis control in obese mice. Swiss mice were distributed into three groups: control mice (CTL), fed a standard rodent chow; diet-induced obesity (DIO), fed an obesity-inducing diet; and a third group, which also received an obesity-inducing diet, but was subjected to an exercise training protocol (DIO + EXE). Protocol training was carried out for 1 h/d, 5 d/wk, for 8 weeks, performed at an intensity of 60% of exhaustion velocity.
View Article and Find Full Text PDF