Aberration-corrected transmission electron microscopy and high-angle annular dark field imaging was used to investigate the surface structures and internal defects of CeO2 nanoparticles (octahedra, rods, and cubes). Further, their catalytic reactivity in the water-gas shift (WGS) reaction and the exposed surface sites by using FTIR spectroscopy were tested. Rods and octahedra expose stable (111) surfaces whereas cubes have primarily (100) facets.
View Article and Find Full Text PDFAqueous-phase reforming of ethylene glycol over alumina-supported Pt-based catalysts is reported. Performance of the catalysts is investigated by conducting kinetics and in situ attenuated total reflectance (ATR)-IR spectroscopic analysis. Pt/γ-Al2 O3 is unstable under APR conditions (270 °C, 90 bar) and undergoes phase transformation to boehmite [AlO(OH)].
View Article and Find Full Text PDFWe present a micromachined silicon attenuated total reflection-infrared (ATR-IR) crystal with integrated nanofluidic glass channels which enables infrared spectroscopic studies with only 71 nL sample volume. Because of the short path length through silicon, the system allows IR spectroscopy down to 1200 cm(-1), which covers the typical fingerprint region of most organic compounds. To demonstrate proof-of-principle, the chip was used to study a Knoevenagel condensation reaction between malononitrile and p-anisaldehyde catalyzed by different concentrations of 1,8-diazabicyclo[5.
View Article and Find Full Text PDFIR spectroscopy has been an important tool for studying detailed interactions of reactants and reaction-intermediates with catalyst surfaces. Studying reactions in water is, however, far from trivial, due to the excessive absorption of infrared light by water. One way to deal with this is the use of Attenuated Total Reflection spectroscopy (ATR-IR) minimizing the path length of infrared light through the water.
View Article and Find Full Text PDFAdsorption and oxidation of carbon monoxide over a Pd/Al2O3 catalyst layer was investigated both in gas phase and water. Both adsorption and oxidation of CO are significantly affected by the presence of liquid water. Water influences the potential of the metal particles as well as the dipole moment of the adsorbed CO molecule directly, which is reflected both in large red shifts and a higher infrared intensity when experiments are carried out in water.
View Article and Find Full Text PDFIn relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on the other hand show similar adsorption characteristics on both Pd/Al2O3 and Pt/Al2O3.
View Article and Find Full Text PDFA FT-IR spectroscopic study of methane, ethane, and propane adsorption on magnesium and calcium forms of zeolite Y reveals different vibrational properties of the adsorbed molecules depending on the exchanged cation. This is attributed to different adsorption conformations of the hydrocarbons. Two-fold eta(2) coordination of light alkanes is realized for MgY, whereas in case of CaY zeolite quite different adsorption modes are found, involving more C-H bonds in the interaction with the cation.
View Article and Find Full Text PDFThe adsorption of oxygen and d2-propane (CH3CD2CH3) on a series of alkaline-earth-exchanged Y zeolite at room temperature was studied with in situ infrared spectroscopy. Surprisingly at room temperature, oxygen adsorption led to the formation of supercage M2+(O2) species. Further, at low propane coverage, propane was found to adsorb linearly on Mg2+ cations, but a ring-adsorption structure was observed for propane adsorbing on Ca2+, Sr2+, and Ba2+ cations.
View Article and Find Full Text PDFAdsorption of carbon monoxide and oxidation of preadsorbed carbon monoxide from gas and aqueous phases were studied on a platinum catalyst deposited on a ZnSe internal reflection element (IRE) using attenuated total reflection infrared (ATR-IR) spectroscopy. The results of this study convincingly show that it is possible to prepare platinum metal layers strongly attached to an IRE, which are stable for over 3 days in aqueous-phase experiments. It is shown that ATR-IR spectroscopy is a suitable technique to study adsorption and catalytic reactions occurring at the interface of a solid catalyst in an aqueous reaction mixture, even with an extreme low-surface-area catalyst.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2001
Tetrapropylammonium (TPA)-containing precursors are the building blocks in the crystallization of silica. In the first steps slab-shaped silicalite nanoparticles are formed by ordered combination of the precursors. These nanoslabs have MFI-type zeolite framework topology and play a key role in TPA-ion-mediated zeolite crystallization from monomeric and polymeric silica sources.
View Article and Find Full Text PDF