Understanding the adaptive functions of increasing brain size have occupied scientists for decades. Here, taking the general perspective of the Extended Evolutionary Synthesis, the question of how brains change in size will be considered in two developmental frameworks. The first framework will consider the particular developmental mechanisms that control and generate brain mass, concentrating on neurogenesis in a comparative vertebrate context.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2022
The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
While the mechanisms generating the topographic organization of primary sensory areas in the neocortex are well studied, what generates secondary cortical areas is virtually unknown. Using physical parameters representing primary and secondary visual areas as they vary from monkey to mouse, we derived a network growth model to explore if characteristic features of secondary areas could be produced from correlated activity patterns arising from V1 alone. We found that V1 seeded variable numbers of secondary areas based on activity-driven wiring and wiring-density limits within the cortical surface.
View Article and Find Full Text PDFNeurodevelopmental duration plays a central role in the evolution of the retina and neocortex in mammals. In the diurnal primate eye and retina, it is necessary to scale the number of cones versus the number of rods with different exponents to defend their respective functions of spatial acuity and sensitivity in eyes of different sizes. The order of photoreceptor precursor specification, cones specified first, rods second, couples their respective cell numbers at maturity to the kinetics of embryonic stem cell proliferation.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2019
Research in the neuroscience of pain perception and visual perception has taken contrasting paths. The contextual and the social aspects of pain judgements predisposed pain researchers to develop computational and functional accounts early, while vision researchers tended to simple localizationist or descriptive approaches first. Evolutionary thought was applied to distinct domains, such as game-theoretic approaches to cheater detection in pain research, versus vision scientists' studies of comparative visual ecologies.
View Article and Find Full Text PDFThe question of how complex human abilities evolved, such as language or face recognition, has been pursued by means of multiple strategies. Highly specialized non-human species have been examined analytically for formal similarities, close phylogenetic relatives have been examined for continuity, and simpler species have been analyzed for the broadest view of functional organization. All these strategies require empirical evidence of what is variable and predictable in both the modeled and the model species.
View Article and Find Full Text PDFScientists have long studied the actions that impact basic survival in various domains of life, such as defense, foraging, reproduction, thermoregulation, and so on, as if such actions will reveal the nature of emotion. Each domain of survival came to be characterized by a repertoire of distinct actions, and each action was thought to be caused by a dedicated neural circuit, called a Survival circuits are thought to be triggered by sensory events in the world, quickly producing obligatory, stereotypic reflexes as well as more flexible, deliberate responses. In this paper, we consider recent evidence from behavioral ecology that even so-called "reflexes" are better understood as purposeful, flexible actions that unfold across a range of temporal trajectories.
View Article and Find Full Text PDFThe widely held belief that the human cortex is exceptionally large for our brain size is wrong, resulting from basic errors in how best to compare evolving brains. This misapprehension arises from the comparison of only a few laboratory species, failure to appreciate differences in brain scaling in rodents versus primates, but most important, the false assumption that linear extrapolation can be used to predict changes from small to large brains. Belief in the exceptionalism of human cortex has propagated itself into genomic analysis of the cortex, where cortex has been studied as if it were an example of innovation rather than predictable scaling.
View Article and Find Full Text PDFComparison of neurodevelopmental sequences between species whose initial period of brain organization may vary from 100 days to 1,000 days, and whose progress is intrinsically non-linear presents large challenges in normalization. Comparing adult timelines when lifespans stretch from 1 year to 75 years, when underlying cellular mechanisms under scrutiny do not scale similarly, presents challenges to simple detection and comparison. The question of adult hippocampal neurogenesis has generated numerous controversies regarding its simple presence or absence in humans versus rodents, whether it is best described as the tail of a distribution centered on early neural development, or is several distinct processes.
View Article and Find Full Text PDFAmong mammals, including humans, adult brain size and the relative size of brain components depend precisely on the duration of a highly regular process of neural development. Much wider variation is seen in rates of body growth and the state of neural maturation at life history events like birth and weaning. Large brains result from slow maturation, which in humans is accompanied by weaning early with respect to both neural maturation and longevity.
View Article and Find Full Text PDFThe cortex of primates is relatively expanded compared with many other mammals, yet little is known about what developmental processes account for the expansion of cortical subtype numbers in primates, including humans. We asked whether GABAergic and pyramidal neuron production occurs for longer than expected in primates than in mice in a sample of 86 developing primate and rodent brains. We use high-resolution structural, diffusion MR scans and histological material to compare the timing of the ganglionic eminences (GE) and cortical proliferative pool (CPP) maturation between humans, macaques, rats, and mice.
View Article and Find Full Text PDFThe cerebral cortex retains its fundamental organization, layering, and input-output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features.
View Article and Find Full Text PDFThe isocortex of several primates and rodents shows a systematic increase in the number of neurons per unit of cortical surface area from its rostrolateral to caudomedial border. The steepness of the gradient in neuronal number and density is positively correlated with cortical volume. The relative duration of neurogenesis along the same rostrocaudal gradient predicts a substantial fraction of this variation in neuron number and laminar position, which is produced principally from layers II-IV neurons.
View Article and Find Full Text PDFUnlike all other New World (platyrrine) monkeys, both male and female howler monkeys (Alouatta sp.) are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies.
View Article and Find Full Text PDFIncrease in the area and neuron number of the cerebral cortex over evolutionary time systematically changes its computational properties. One of the fundamental developmental mechanisms generating the cortex is a conserved rostrocaudal gradient in duration of neuron production, coupled with distinct asymmetries in the patterns of axon extension and synaptogenesis on the same axis. A small set of conserved sensorimotor areas with well-defined thalamic input anchors the rostrocaudal axis.
View Article and Find Full Text PDFA massive increase in the number of neurons in the cerebral cortex, driving its size to increase by five orders of magnitude, is a key feature of mammalian evolution. Not only are there systematic variations in cerebral cortical architecture across species, but also across spatial axes within a given cortex. In this article we present a computational model that accounts for both types of variation as arising from the same developmental mechanism.
View Article and Find Full Text PDFSpatial gradients in the initiation and termination of basic processes, such as cytogenesis, cell-type specification and dendritic maturation, are ubiquitous in developing nervous systems. Such gradients can produce a niche adaptation in a particular species. For example, the high density of photoreceptors and neurons in the 'area centralis' of some vertebrate retinas result from the early maturation of its center relative to its periphery.
View Article and Find Full Text PDFSociality and cooperation are benefits to human cultures but may carry unexpected costs. We suggest that both the human experience of pain and the expression of distress may result from many causes not experienced as painful in our close primate relatives, because human ancestors motivated to ask for help survived in greater numbers than either the thick-skinned or the stoic.
View Article and Find Full Text PDFEfforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data.
View Article and Find Full Text PDFEfforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data.
View Article and Find Full Text PDFFront Hum Neurosci
January 2014
A central question in brain evolution is how species-typical behaviors, and the neural function-structure mappings supporting them, can be acquired and inherited. Advocates of brain modularity, in its different incarnations across scientific subfields, argue that natural selection must target domain-dedicated, separately modifiable neural subsystems, resulting in genetically-specified functional modules. In such modular systems, specification of neuron number and functional connectivity are necessarily linked.
View Article and Find Full Text PDFNew stereological assessments of lateral geniculate nucleus (LGN) neuron numbers and volumes in five New World primates (Cebus apella, Saguinus midas niger, Alouatta caraya, Aotus azarae, and Callicebus moloch) and compiled LGN volumes for an additional 26 mammals were analyzed for a better understanding of visual system evolution. Both the magnocellular (M)- and the parvocellular (P)-cell populations scale allometrically with brain volume in primates, P cells with a significantly higher slope such that, for every increase in M neuron number, P neuron numbers more than double (ln scale; y = 0.89x + 2.
View Article and Find Full Text PDFUniformity, local variability, and systematic variation in neuron numbers per unit of cortical surface area across species and cortical areas have been claimed to characterize the isocortex. Resolving these claims has been difficult, because species, techniques, and cortical areas vary across studies. We present a stereological assessment of neuron numbers in layers II-IV and V-VI per unit of cortical surface area across the isocortex in rodents (hamster, Mesocricetus auratus; agouti, Dasyprocta azarae; paca, Cuniculus paca) and primates (owl monkey, Aotus trivigratus; tamarin, Saguinus midas; capuchin, Cebus apella); these chosen to vary systematically in cortical size.
View Article and Find Full Text PDFA general model of neural development is derived to fit 18 mammalian species, including humans, macaques, several rodent species, and six metatherian (marsupial) mammals. The goal of this work is to describe heterochronic changes in brain evolution within its basic developmental allometry, and provide an empirical basis to recognize equivalent maturational states across animals. The empirical data generating the model comprises 271 developmental events, including measures of initial neurogenesis, axon extension, establishment, and refinement of connectivity, as well as later events such as myelin formation, growth of brain volume, and early behavioral milestones, to the third year of human postnatal life.
View Article and Find Full Text PDFHow the unique capacities of human cognition arose in evolution is a question of enduring interest. The difficulty of finding the best allometric and developmental frame for brain evolution and growth, however, leads researchers to routinely identify predictable features of the human brain as exceptional.
View Article and Find Full Text PDF