Wilson disease is caused by accumulation of Cu(2+) in cells, which results in liver cirrhosis and, occasionally, anemia. Here, we show that Cu(2+) triggers hepatocyte apoptosis through activation of acid sphingomyelinase (Asm) and release of ceramide. Genetic deficiency or pharmacological inhibition of Asm prevented Cu(2+)-induced hepatocyte apoptosis and protected rats, genetically prone to develop Wilson disease, from acute hepatocyte death, liver failure and early death.
View Article and Find Full Text PDFCell Physiol Biochem
September 2006
Side effects of cytostatic treatment include development of anemia resulting from either decreased generation or accelerated clearance of circulating erythrocytes. Recent experiments revealed a novel kind of stress-induced erythrocyte death, i.e.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2006
Glucose depletion of erythrocytes leads to activation of Ca2+-permeable cation channels, Ca2+ entry, activation of a Ca2+-sensitive erythrocyte scramblase, and subsequent exposure of phosphatidylserine at the erythrocyte surface. Ca2+ entry into erythrocytes was previously shown to be stimulated by phorbol esters and to be inhibited by staurosporine and chelerythrine and is thus thought to be regulated by protein phosphorylation/dephosphorylation, presumably via protein kinase C (PKC) and the corresponding phosphoserine/threonine phosphatases. The present experiments explored whether PKC could contribute to effects of energy depletion on erythrocyte phosphatidylserine exposure and cell volume.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
November 2005
Osmotic shock, oxidative stress and Cl- removal activate a non-selective Ca2+-permeable cation conductance in human erythrocytes. The entry of Ca2+ leads to activation of a scramblase with subsequent exposure of phosphatidylserine at the cell surface. Phosphatidylserine mediates binding to phosphatidylserine receptors on macrophages which engulf and degrade phosphatidylserine exposing cells.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2006
The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg2+-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg2+ in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane.
View Article and Find Full Text PDFOsmotic erythrocyte shrinkage leads to activation of cation channels with subsequent Ca2+ entry and stimulates a sphingomyelinase with subsequent formation of ceramide. Ca2+ and ceramide then activate a scramblase leading to breakdown of phosphatidylserine asymmetry of the cell membrane. The mediators accounting for activation of erythrocyte sphingomyelinase and phosphatidylserine exposure remained elusive.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2005
Pb+ intoxication causes anemia that is partially due to a decreased life span of circulating erythrocytes. As shown recently, a Ca(2+)-sensitive erythrocyte scramblase is activated by osmotic shock, oxidative stress, and/or energy depletion, leading to exposure of phosphatidylserine at the erythrocyte surface. Because macrophages are equipped with phosphatidylserine receptors, they bind, engulf, and degrade phosphatidylserine-exposing cells.
View Article and Find Full Text PDF