Publications by authors named "Barbara K Lipska"

Common variants in the MicroRNA 137 host gene MIR137HG and its adjacent gene DPYD have been associated with schizophrenia risk and the latest Psychiatric Genomics Consortium (PGC). Genome-Wide Association Study on schizophrenia has confirmed and extended these findings. To elucidate the association of schizophrenia risk-associated SNPs in this genomic region, we examined the expression of both mature and immature transcripts of the miR-137 host gene (MIR137HG) in the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC) of postmortem brain samples of donors with schizophrenia and psychiatrically-unaffected controls using qPCR and RNA-Seq approaches.

View Article and Find Full Text PDF

Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not.

View Article and Find Full Text PDF

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 10-10-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines gene expression differences in the subgenual anterior cingulate cortex (sgACC) among individuals with bipolar disorder, schizophrenia, major depression, and healthy controls, using RNA from 200 postmortem donors.
  • - Researchers found that while there were modest expression differences across disorders, case-case comparisons showed greater variations, with some gene transcripts displaying opposing expression patterns between diagnostic groups.
  • - The study highlights that certain rare gene transcripts linked to synapse formation and cell junctions are differentially expressed and suggests that common genetic variants associated with mental illness risk may influence these gene expressions, impacting our understanding of psychiatric diagnoses.
View Article and Find Full Text PDF

Structural variants (SVs) contribute to many disorders, yet, functionally annotating them remains a major challenge. Here, we integrate SVs with RNA-sequencing from human post-mortem brains to quantify their dosage and regulatory effects. We show that genic and regulatory SVs exist at significantly lower frequencies than intergenic SVs.

View Article and Find Full Text PDF

Active communication between researchers and society is necessary for the scientific community's involvement in developing science-based policies. This need is recognized by governmental and funding agencies that compel scientists to increase their public engagement and disseminate research findings in an accessible fashion. Storytelling techniques can help convey science by engaging people's imagination and emotions.

View Article and Find Full Text PDF

Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder.

View Article and Find Full Text PDF

Risk variants for schizophrenia affect more than 100 genomic loci, yet cell- and tissue-specific roles underlying disease liability remain poorly characterized. We have generated for two cortical areas implicated in psychosis, the dorsolateral prefrontal cortex and anterior cingulate cortex, 157 reference maps from neuronal, neuron-depleted and bulk tissue chromatin for two histone marks associated with active promoters and enhancers, H3-trimethyl-Lys4 (H3K4me3) and H3-acetyl-Lys27 (H3K27ac). Differences between neuronal and neuron-depleted chromatin states were the major axis of variation in histone modification profiles, followed by substantial variability across subjects and cortical areas.

View Article and Find Full Text PDF

Dopamine transporters (DAT) are implicated in the pathogenesis and treatment of attention-deficit hyperactivity disorder (ADHD) and are upregulated by chronic treatment with methylphenidate, commonly prescribed for ADHD. Methylation of the DAT1 gene in brain and blood has been associated with DAT expression in rodents' brains. Here we tested the association between methylation of the DAT1 promoter derived from blood and DAT availability in the striatum of unmedicated ADHD adult participants and in that of healthy age-matched controls (HC) using Positron Emission Tomography (PET) and [ C]cocaine.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) of complex, heritable, behavioral phenotypes have yielded an incomplete accounting of the genetic influences. The identified loci explain only a portion of the observed heritability, and few of the loci have been shown to be functional. It is clear that current GWAS techniques overlook key components of phenotypically relevant genetic variation, either because of sample size, as is frequently asserted, or because of methodology.

View Article and Find Full Text PDF

Background: Postsynaptic density-95 (PSD-95) protein expression is dysregulated in schizophrenia in a variety of brain regions. We have designed experiments to examine PSD-95 mRNA splice variant expression in the dorsolateral prefrontal cortex from subjects with schizophrenia.

Methods: We performed quantitative PCR and western blot analysis to measure PSD-95 expression in schizophrenia vs control subjects, rodent haloperidol treatment studies, rodent postmortem interval studies, and GluN1 knockdown (KD) mice vs controls.

View Article and Find Full Text PDF

Postmortem brain studies support dysregulated expression of the histone deacetylase enzymes, HDAC1 and HDAC2, as a central feature in diseases including schizophrenia, bipolar disorder, and depression. Our objective was to investigate HDAC expression in a large postmortem sample set representing healthy and disease brains. We used >700 well-characterized samples from patients diagnosed with schizophrenia (n = 175), major depressive disorder (n = 135), and bipolar disorder (n = 61) to measure HDAC1 and HDAC2 transcript levels by quantitative real-time PCR in dorsolateral prefrontal cortex (DLPFC) and caudate compared to control samples.

View Article and Find Full Text PDF

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability.

View Article and Find Full Text PDF

Background: The nervous system may include more than 100 residue-specific posttranslational modifications of histones forming the nucleosome core that are often regulated in cell-type-specific manner. On a genome-wide scale, some of the histone posttranslational modification landscapes show significant overlap with the genetic risk architecture for several psychiatric disorders, fueling PsychENCODE and other large-scale efforts to comprehensively map neuronal and nonneuronal epigenomes in hundreds of specimens. However, practical guidelines for efficient generation of histone chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) datasets from postmortem brains are needed.

View Article and Find Full Text PDF

Genetic variation and early adverse environmental events work together to increase risk for schizophrenia. γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adult mammalian brain, plays a major role in normal brain development, and has been strongly implicated in the pathobiology of schizophrenia. GABA synthesis is controlled by two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce a number of alternative transcripts.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs.

View Article and Find Full Text PDF

Objective: CHRNA7, coding α-7 nicotinic acetylcholine receptor (α7 nAChR), is involved in cognition through interneuron modulation of dopamine and glutamate signaling. CHRNA7 and its partially duplicated chimeric gene CHRFAM7A have been implicated in schizophrenia through linkage and association studies.

Method: Expression of CHRNA7 and CHRFAM7A mRNA was measured in the postmortem prefrontal cortex in more than 700 subjects, including patients with schizophrenia, bipolar disorder, major depression, and normal comparison subjects.

View Article and Find Full Text PDF

Background: Schizophrenia is a complex psychiatric disorder with a lifetime morbidity rate of 0.5-1.0%.

View Article and Find Full Text PDF

Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12A2) encodes one of two cation chloride cotransporters mediating the conversion of GABA from excitatory to inhibitory. Using 3' and 5' RACE and PCR, we verified previously characterized alternative transcripts of NKCC1a (1-27) and NKCC1b (1-27(Δ21)), identified new NKCC1 transcripts, and explored their expression patterns during human prefrontal cortical development.

View Article and Find Full Text PDF

Background: 22q11.2 deletion syndrome (22q11.2DS) is the most common genetic syndrome associated with schizophrenia.

View Article and Find Full Text PDF

OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia.

View Article and Find Full Text PDF

Background: The 5-hydroxytryptamine 2A receptor, encoded by HTR2A, is a major postsynaptic target for serotonin in the human brain and a therapeutic drug target. Despite hundreds of genetic associations investigating HTR2A polymorphisms in neuropsychiatric disorders and therapies, the role of genetic HTR2A variability in health and disease remains uncertain.

Methods: To discover and characterize regulatory HTR2A variants, we sequenced whole transcriptomes from 10 human brain regions with massively parallel RNA sequencing and measured allelic expression of multiple HTR2A messenger (m)RNA transcript variants.

View Article and Find Full Text PDF

Background: Clinical studies have identified several regions of the genome with copy number variations (CNVs) associated with diverse neurodevelopmental behavioral disorders.

Methods: We analyzed 1 million (M) single nucleotide polymorphism genotype arrays for evidence of previously reported recurrent CNVs and enriched genome-wide CNV burden in DNA from 600 brains, including 441 individuals with various psychiatric diagnoses. We explored gene expression in the dorsolateral prefrontal cortex in selected cases with CNVs and in other subjects with Illumina BeadArrays (568 subjects in total) and additionally in 66-92 subjects with quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF