Publications by authors named "Barbara K Keith"

Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks.

View Article and Find Full Text PDF

Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A.

View Article and Find Full Text PDF

Background: Intensive use of herbicides has led to the evolution of two multiple herbicide-resistant (MHR) Avena fatua (wild oat) populations in Montana that are resistant to members of all selective herbicide families available for A. fatua control in US small grain crops. We used transcriptome and proteome surveys to compare constitutive changes in MHR and herbicide-susceptible (HS) plants associated with non-target site resistance.

View Article and Find Full Text PDF

Ecological theory predicts that fitness costs of herbicide resistance should lead to the reduced relative abundance of resistant populations upon the cessation of herbicide use. This greenhouse research investigated the potential fitness costs of two multiple herbicide resistant (MHR) wild oat (Avena fatua) populations, an economically important weed that affects cereal and pulse crop production in the Northern Great Plains of North America. We compared the competitive ability of two MHR and two herbicide susceptible (HS) A.

View Article and Find Full Text PDF