The adipokine, leptin, regulates blood glucose and the insulin secretory function of beta cells, while also modulating immune cell function. We hypothesized that the dual effects of leptin may prevent or suppress the autoreactive destruction of beta cells in a virally induced rodent model of type 1 diabetes. Nearly 100% of weanling BBDR rats treated with the combination of an innate immune system activator, polyinosinic:polycytidylic acid (pIC), and Kilham rat virus (KRV) become diabetic within a predictable time frame.
View Article and Find Full Text PDFUse of the BioBreeding (BB) rat to model human insulin-dependent diabetes mellitus (IDDM) is useful in that characteristics of diabetes in the BB rat closely parallel those observed in human IDDM. Diabetic animals can be biopsied, autopsied, and bred to study the genetic basis of IDDM. The genetic, immunological, and environmental components of the disease can all be investigated under controlled conditions.
View Article and Find Full Text PDFA variety of DNA vaccine prime and recombinant viral boost immunization strategies have been developed to enhance immune responses in humans, but inherent limitations to these strategies exist. There is still an overwhelming need to develop safe and effective approaches that raise broad humoral and T cell-mediated immune responses systemically and on mucosal surfaces. We have developed a novel mucosal immunization regimen that precludes the use of viral vectors yet induces potent T cell responses.
View Article and Find Full Text PDFPeripheral T cells can be polarized towards type 1 or type 2 cytokine immune responses during TCR engagement. Because T cell selection by peptide plus self-MHC in the thymus requires TCR engagement, we hypothesized that type 1 cytokines may polarize developing T cells. We cultured thymi from BBDR rats in adult thymus organ cultures (ATOC) under type 1 cytokine conditions in the absence of exogenous antigen.
View Article and Find Full Text PDF