Publications by authors named "Barbara J MacGregor"

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, hydrothermal activity, and organic matter accumulation on the seafloor due to high sedimentation rates. In the hydrothermal sediments of Guaymas Basin, microbial community compositions and coexistence patterns change across steep gradients of temperature, potential carbon sources, and electron acceptors. Nonmetric multidimensional scaling and guanine-cytosine percentage analyses reveal that the bacterial and archaeal communities adjust compositionally to their local temperature regime.

View Article and Find Full Text PDF

Temperature and bioavailable energy control the distribution of life on Earth, and interact with each other due to the dependency of biological energy requirements on temperature. Here we analyze how temperature-energy interactions structure sediment microbial communities in two hydrothermally active areas of Guaymas Basin. Sites from one area experience advective input of thermogenically produced electron donors by seepage from deeper layers, whereas sites from the other area are diffusion-dominated and electron donor-depleted.

View Article and Find Full Text PDF

Filamentous large sulfur-oxidizing bacteria (FLSB) of the family are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a "fried-egg" appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide.

View Article and Find Full Text PDF

For multidomain proteins, evolutionary changes may occur at the domain as well as the whole-protein level. An example is presented here, with suggestions for how such complicated relationships might be visualized. Earlier analysis of the Maribeggiatoa str.

View Article and Find Full Text PDF

A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area.

View Article and Find Full Text PDF

Deep-sea hypersaline anoxic basins and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that have been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico.

View Article and Find Full Text PDF

The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution.

View Article and Find Full Text PDF

The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea.

View Article and Find Full Text PDF

The genome sequences of several giant marine sulfur-oxidizing bacteria present evidence of a possible post-transcriptional regulatory network that may have been transmitted to or from two distantly related bacteria lineages. The draft genome of a Cand. "Maribeggiatoa" filament from the Guaymas Basin (Gulf of California, Mexico) seafloor contains 169 sets of TAACTGA direct repeats and one indirect repeat, with two to six copies per set.

View Article and Find Full Text PDF

A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here.

View Article and Find Full Text PDF

The draft genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament collected from a microbial mat at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) shows evidence of extensive genetic exchange with cyanobacteria, in particular for sensory and signal transduction genes. A putative homing endonuclease gene and group I intron within the 23S rRNA gene; several group II catalytic introns; GyrB and DnaE inteins, also encoding homing endonucleases; multiple copies of sequences similar to the fdxN excision elements XisH and XisI (required for heterocyst differentiation in some cyanobacteria); and multiple sequences related to an open reading frame (ORF) (00024_0693) of unknown function all have close non-Beggiatoaceae matches with cyanobacterial sequences. Sequences similar to the uncharacterized ORF and Xis elements are found in other Beggiatoaceae genomes, a variety of cyanobacteria, and a few phylogenetically dispersed pleiomorphic or filamentous bacteria.

View Article and Find Full Text PDF

Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained.

View Article and Find Full Text PDF

Stable isotope probing of magnetic-bead-captured rRNA (Mag-SIP) indicated clear differences in in situ organic substrate utilization by major microbial groups between the more oxidized (0 to 2 cm) and sulfate-reducing (2 to 5 cm) horizons of marine intertidal sediment. We also showed that cyanobacteria and diatoms may survive by glucose utilization under dark anoxic conditions.

View Article and Find Full Text PDF

For accurate quantification of DNA and RNA from environmental samples, yield loss during nucleic acid purification has to be minimized. Quantitative PCR (qPCR) and reverse transcription (RT)-qPCR require a trade-off between maximizing yield and removing inhibitors. We compared DNA and RNA yield and suitability for quantitative SYBR Green PCR and RT-PCR using the UltraClean and PowerSoil extraction kits and a bead-beating protocol with phenol/chloroform extraction steps.

View Article and Find Full Text PDF

We further developed the stable isotope probing, magnetic-bead capture method to make it applicable for linking microbial community function to phylogeny at the class and family levels. The main improvements were a substantial decrease in the protocol blank and an approximately 10-fold increase in the detection limit by using a micro-elemental analyzer coupled to isotope ratio mass spectrometry to determine (13)C labeling of isolated 16S rRNA. We demonstrated the method by studying substrate utilization by Desulfobacteraceae, a dominant group of complete oxidizing sulfate-reducing Deltaproteobacteria in marine sediments.

View Article and Find Full Text PDF

Cold seeps in the Gulf of Mexico are often dominated by mussels of the genus Bathymodiolus that harbour symbiotic bacteria in their gills. In this study, we analysed symbiont diversity, abundance and metabolic potential in three mussel species from the northern Gulf of Mexico: Bathymodiolus heckerae from the West Florida Escarpment, Bathymodiolus brooksi from Atwater Valley and Alaminos Canyon, and 'Bathymodiolus' childressi, which co-occurs with B. brooksi in Alaminos Canyon.

View Article and Find Full Text PDF

An updated dataset of in silico specificities for 54 previously published 16S rRNA-targeted oligonucleotides was assembled to provide guidance for reliable fluorescence in situ hybridization (FISH) analysis of sulfate-reducing bacteria. Additionally, six new FISH probes were developed for major deltaproteobacterial taxa, including a probe trio targeting most Deltaproteobacteria and Gemmatimonadetes.

View Article and Find Full Text PDF

We determined whether a recently developed method to isolate specific small-subunit (SSU) rRNAs can be used in 13C-labeling studies to directly link community structure and function in natural ecosystems. Replicate North Sea sediment cores were incubated at the in situ temperature following addition of 13C-labeled acetate, propionate, amino acids, or glucose. Eukaryotic and bacterial SSU rRNAs were separated from total RNA by means of biotin-labeled oligonucleotide probes and streptavidin-coated paramagnetic beads, and the 13C content of the isolated rRNA was determined by elemental analysis-isotope ratio mass spectrometry.

View Article and Find Full Text PDF

We show that non-denaturing gel electrophoresis, or single-stranded conformational polymorphism (SSCP), can be used to separate mixtures of full-length rRNAs. Individual bands can then be excised for identification by RT-PCR and sequencing. This has the advantage over profiling methods such as DGGE and T-RFLP that no PCR amplification is involved prior to sequencing; thus, extraction biases aside, it should yield a quantitative picture of community composition in terms of ribosome content.

View Article and Find Full Text PDF

In situ identification of prokaryotic cells in subsurface sediments is hampered by the low cellular rRNA contents of the target organisms. Fluorescence in situ hybridization with catalyzed reporter deposition (CARD-FISH) has the potential to overcome this limitation, and was therefore optimized for a 40 cm deep sediment core sampled from a tidal sandy flat of the German Wadden Sea. Treatment with methanol and H(2)O(2) inactivated endogenous peroxidases and effectively reduced the background signal.

View Article and Find Full Text PDF

We characterized the diversity of sulphate-reducing bacteria (SRB) associated with South African gold mine boreholes and deep aquifer systems in Washington State, USA. Sterile cartridges filled with crushed country rock were installed on two hydrologically isolated and chemically distinct sites at depths of 3.2 and 2.

View Article and Find Full Text PDF

Small-subunit ribosomal RNA (SSU rRNA) has several characteristics making it a good candidate biomarker compound: it is found in bacteria, archaea and eukaryotes; it is quickly degraded extracellularly, hence SSU rRNA extracted from a sample probably derives from the currently active population; it includes both conserved and variable regions, allowing the design of capture probes at various levels of phylogenetic discrimination; and rRNA sequences from uncultured species can be classified by comparison with the large and growing public database. Here we present a method for isolation of specific classes of rRNAs from mixtures of total RNA, employing biotin-labelled oligonucleotide probes and streptavidin-coated paramagnetic beads. We also show that the stable carbon isotope composition of Escherichia coli total RNA and SSU rRNA reflects that of the growth substrate for cells grown on LB, M9 glucose and M9 acetate media.

View Article and Find Full Text PDF

The geochemical behavior of Co in aquatic systems has often been related to the presence of Fe and Mn particles. A few studies have shown that Co is exclusively associated with particulate Mn, but the dynamics of Co and Mn cycling have never been determined in real time under natural conditions. In this study, we used a combination of analytical techniques to study the temporal and spatial evolution of Mn microparticles (MnOx) over 2 weeks in the water column of a shallow stratified lake (Paul Lake, MI).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: