Publications by authors named "Barbara J Bond"

The carbon isotopic composition (delta(13)C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the delta(13)C of soil respiration, which suggests indirectly that recently fixed photosynthates comprise a substantial component of substrates consumed by soil respiration. However, there are other reasons why the delta(13)CO(2) of soil efflux may change with moisture conditions, which have not received as much attention.

View Article and Find Full Text PDF

Patterns in the isotopic signal (stable C isotope composition; delta(13)C) of respiration (delta(13)C(R)) have led to important gains in understanding the C metabolism of many systems. Contained within delta(13)C(R) is a record of the C source mineralized, the metabolic pathway of C and the environmental conditions during which respiration occurred. Because gas samples used for analysis of delta(13)C(R) contain a mixture of CO(2) from respiration and from the atmosphere, two-component mixing models are used to identify delta(13)C(R).

View Article and Find Full Text PDF

The stable isotopic composition of soil (13)CO(2) flux is important for monitoring soil biological and physical processes. While several methods exist to measure the isotopic composition of soil flux, we do not know how effective each method is at achieving this goal. To provide clear evidence of the accuracy of current measurement techniques we created a column filled with quartz sand through which a gas of known isotopic composition (-34.

View Article and Find Full Text PDF

Phenotypic plasticity in needle morphology with increasing tree size and age was investigated by comparing four age classes of red spruce (Picea rubens Sarg.) ranging from juvenile (3-12 years old) to mature (over 100 years old). With increase in tree age there were significant increases in leaf mass per unit area (LMA), mesophyll and vascular bundle area as a percentage of total needle cross-sectional area, and stomatal density.

View Article and Find Full Text PDF

The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees.

View Article and Find Full Text PDF

This paper presents initial investigations of a new approach to monitor ecosystem processes in complex terrain on large scales. Metabolic processes in mountainous ecosystems are poorly represented in current ecosystem monitoring campaigns because the methods used for monitoring metabolism at the ecosystem scale (e.g.

View Article and Find Full Text PDF

The characteristic decline in height growth that occurs over a tree's lifespan is often called "age-related decline." But is the reduction in height growth in aging trees a function of age or of size? We grafted shoot tips across different ages and sizes of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine whether the decline in height growth is mediated by tree size or by the age of the apical meristem.

View Article and Find Full Text PDF

Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (delta 18O) as high as 4% per hundred were observed for water vapour (delta (18)Ovp) above and within an old-growth coniferous forest in the Pacific Northwest region of the United States. Values of delta 18Ovp decreased in the morning, reached a minimum at midday, and recovered to early-morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days.

View Article and Find Full Text PDF

We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees.

View Article and Find Full Text PDF

The short form of the Conners-Wells Adolescent Self-Report Scale (CASS:Short) is administered to 319 children and 844 adolescents to investigate whether the instrument can be used with respondents under the age of 12. Mothers of all respondents are asked to rate each child using a measure designed to assess a parallel set of problem behaviors. The factor structure of the CASS:Short is tested in both samples and is found to have good fit to the data.

View Article and Find Full Text PDF

The carbon isotope signature (delta13C) of foliar cellulose from sunlit tops of trees typically becomes enriched as trees of the same species in similar environments grow taller, indicative of size-related changes in leaf gas exchange. However, direct measurements of gas exchange in common environmental conditions do not always reveal size-related differences, even when there is a distinct size-related trend in delta13C of the very foliage used for the gas exchange measurements. Since delta13C of foliage predominately reflects gas exchange during spring when carbon is incorporated into leaf cellulose, this implies that gas exchange differences in different-sized trees are most likely to occur in favorable environmental conditions during spring.

View Article and Find Full Text PDF

Background: Pathological gambling is more prevalent among postsecondary students than among the general adult population. While the prevalence of pathological gambling in this group has risen over the past decade, factors underlying the development of problem gambling among university students remain largely unexplored. One early study found alexithymia to be associated with pathological gambling.

View Article and Find Full Text PDF

Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.

View Article and Find Full Text PDF

We tested the hypotheses that hydraulic conductance is lower in old (about 250 years old and 30 m tall) compared to young (about 40 years old and 10 m tall) Pinus ponderosa Dougl. ex Laws. trees and that lower hydraulic conductance of old trees limits their photosynthesis.

View Article and Find Full Text PDF

To record photosynthetically active radiation (PAR) simultaneously at a number of points throughout a forest canopy, we developed a simple, inexpensive (< $10 US) current-to-voltage converter that processes the current generated by a photodiode radiation sensor to a voltage range that is recordable with a miniature data logger. The converter, which weighs less than 75 g and has a volume of only 100 cm(3), is built around an ultra-low power OP-90 precision operational amplifier, which consumes less than 0.5 mA at 9 V when converting the output of a Li-Cor LI-190SA quantum sensor exposed to photosynthetically active radiation (PAR) of 2500 &mgr;mol m(-2) s(-1) or only 5 &mgr;A in low light.

View Article and Find Full Text PDF

Midday stomatal closure is mediated by the availability of water in the soil, leaf and atmosphere, but the response to these environmental and internal variables is highly species specific. We tested the hypothesis that species differences in stomatal response to humidity and soil water availability can be explained by two parameters: leaf-specific hydraulic conductance (K(L)) and a threshold leaf water potential (Psi(threshold)). We used a combination of original and published data to estimate characteristic values of K(L) and Psi(threshold) for four common tree species that have distinctly different stomatal behaviors: black cottonwood (Populus trichocarpa Torr.

View Article and Find Full Text PDF

The hydraulic limitation hypothesis (Ryan and Yoder 1997) proposes that leaf-specific hydraulic conductance (kl) and stomatal conductance (gs) decline as trees grow taller, resulting in decreased carbon assimilation. We tested the hydraulic limitation hypothesis by comparison of canopy-dominant Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.

View Article and Find Full Text PDF

Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.

View Article and Find Full Text PDF

Variation in the carbon isotopic composition of ecosystem respiration (δC) was studied for 3  years along a precipitation gradient in western Oregon, USA, using the Keeling plot approach. Study sites included six coniferous forests, dominated by Picea sitchensis, Tsuga heterophylla, Pseudotsuga menziesii, Pinus ponderosa, and Juniperus occidentalis, and ranged in location from the Pacific coast to the eastern side of the Cascade Mountains (a 250-km transect). Mean annual precipitation across these sites ranged from 227 to 2,760 mm.

View Article and Find Full Text PDF

We tested for reductions in water transport with increasing tree size, a key component in determining whether gas exchange and growth are hydraulically limited in tall trees. During the summers of 1998 and 1999, we measured water transport with Granier-type, constant-heat sap flow probes, vapor pressure deficit, and leaf and soil water potentials in overstory Pseudotsuga menziesii (Mirb.) Franco trees in three stands differing in size and age (15, 32 and 60 m in height and about 20, 40 and 450 years in age, respectively) in a P.

View Article and Find Full Text PDF

We measured net carbon flux (F(CO2)) and net H2O flux (F(H2O)) by the eddy-covariance method at three Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)-western hemlock (Tsuga heterophylla (Raf.) Sarg.

View Article and Find Full Text PDF

Morphological differences between old-growth trees and saplings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross sections of previous-year needles of old-growth Douglas-fir trees and saplings at the Wind River Canopy Crane site in Washington and at three sites in the Cascade Mountains of Oregon.

View Article and Find Full Text PDF

This paper provides an overview of the work reported at a symposium on age-related changes in the structure and function of forests in the United States Pacific Northwest. Some of the work presented at this meeting is reported in the peer-reviewed papers comprising this journal issue. Age-related changes in leaf structure, CO2 assimilation rate, stable carbon isotope ratio, nitrogen concentration and stomatal limitation were demonstrated at many organizational scales.

View Article and Find Full Text PDF

The following study investigates the timing and mechanism of impact of Swiss needle cast on Douglas-fir (Pseudotsuga menziesii) needle physiology (i.e. gas exchange).

View Article and Find Full Text PDF

To examine the predictability of leaf physiology and biochemistry from light gradients within canopies, we measured photosynthetic light-response curves, leaf mass per area (LMA) and concentrations of nitrogen, phosphorus and chlorophyll at 15-20 positions within canopies of three conifer species with increasing shade tolerance, ponderosa pine [Pinus ponderosa (Laws.)], Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], and western hemlock [Tsuga heterophylla (Raf.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5rknm2lo7a9j320ebehbn87qml7ij5on): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once