Diapause regulates seasonal insect life cycles and may be highly variable within and among populations due to genetic and environmental variability. Both types of variation may influence how populations respond plastically or evolutionarily to changing climates. We assessed diapause variability in spruce beetle Dendroctonus rufipennis Kirby (Coleoptera: Curculionidae, Scolytinae), a major forest pest whose life cycle timing is regulated by both prepupal and adult diapauses.
View Article and Find Full Text PDFInsects live in a wide range of thermal environments and have evolved species- and location-specific physiological processes for survival in hot and cold extremes. Thermally driven dormancy strategies, development rates and thresholds are important for synchronizing cohorts within a population and to local climates and often vary among populations within a species. Mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a widely distributed forest insect native to North America with clinal genetic differentiation in thermally dependent traits.
View Article and Find Full Text PDFIdentifying dormancy traits is important for predicting insect population success, particularly in a changing climate that could disrupt evolved traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is native to North America, is responsible for millions of acres of tree mortality, and is expanding northward in Canada. Research has identified thermal traits important to epidemic-phase ecology that vary among populations.
View Article and Find Full Text PDFInsects have major impacts on forest ecosystems, from herbivory and soil-nutrient cycling to killing trees at a large scale. Forest insects from temperate, tropical, and subtropical regions have evolved strategies to respond to seasonality; for example, by entering diapause, to mitigate adversity and to synchronize lifecycles with favorable periods. Here, we show that distinct functional groups of forest insects; that is, canopy dwellers, trunk-associated species, and soil/litter-inhabiting insects, express a variety of diapause strategies, but do not show systematic differences in diapause strategy depending on functional group.
View Article and Find Full Text PDFPlants resist herbivores and pathogens by using constitutive (baseline) and inducible (change in defense after an attack) defenses. Inducibility has long been predicted to trade off with constitutive defense, reflecting the economic use of resources. However, empirical evidence for such tradeoffs is variable, and we still lack understanding about when and where defense trade-offs occur.
View Article and Find Full Text PDFA key component in understanding plant-insect interactions is the nature of host defenses. Research on defense traits among Pinus species has focused on specialized metabolites and axial resin ducts, but the role of lignin in defense within diverse systems is unclear. We investigated lignin levels in the outer bark and phloem of P.
View Article and Find Full Text PDFForests in the western United States are being subject to more frequent and severe drought events as the climate warms. The 2012-2015 California drought is a recent example, whereby drought stress was exacerbated by a landscape-scale outbreak of western pine beetle (Dendroctonus brevicomis) and resulted in widespread mortality of dominant canopy species including ponderosa pine (Pinus ponderosa). In this study, we compared pairs of large surviving and beetle-killed ponderosa pines following the California drought in the southern Sierra Nevadas to evaluate physiological characteristics related to survival.
View Article and Find Full Text PDFThe preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows.
View Article and Find Full Text PDFEnviron Entomol
February 2018
Dormancy strategies, including diapause and quiescence, enable insects to evade adverse conditions and ensure seasonally appropriate life stages. A mechanistic understanding of a species' dormancy is necessary to predict population response in a changing climate. Climate change is influencing distribution patterns and population success of many species, including Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), the most important mortality agent of pines in western North America.
View Article and Find Full Text PDFGenome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations.
View Article and Find Full Text PDFChromosomal rearrangement can be an important mechanism driving population differentiation and incipient speciation. In the mountain pine beetle (MPB, Dendroctonus ponderosae), deletions on the Y chromosome that are polymorphic among populations are associated with reproductive incompatibility. Here, we used RAD sequencing across the entire MPB range in western North America to reveal the extent of the phylogeographic differences between Y haplotypes compared to autosomal and X-linked loci.
View Article and Find Full Text PDFWe summarize the status of semiochemical-based management of the major bark beetle species in western North America. The conifer forests of this region have a long history of profound impacts by phloem-feeding bark beetles, and species such as the mountain pine beetle (Dendroctonus ponderosae) and the spruce beetle (D. rufipennis) have recently undergone epic outbreaks linked to changing climate.
View Article and Find Full Text PDFDiapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity.
View Article and Find Full Text PDFMountain pine beetles (MPB, Dendroctonus ponderosae Hopkins) are aggressive insects attacking Pinus host trees. Pines use defensive resin to overwhelm attackers, creating an Allee effect requiring beetles to attack en masse to successfully reproduce. MPB kill hosts, leaving observable, dying trees with red needles.
View Article and Find Full Text PDFFire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.
View Article and Find Full Text PDFMountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB) region, North America.
View Article and Find Full Text PDFTree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees.
View Article and Find Full Text PDFThe fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures.
View Article and Find Full Text PDFMountain pine beetle tree colonization typically occurs in July and August, with completion of a generation one (univoltinism) or two (semivoltinism) years later. In a 2012 publication, Mitton and Ferrenberg suggested that climate change resulted in an unprecedented generation between June and September (a summer generation), with a concomitant shift to two generations in one year (bivoltinism). Although summer generations are not uncommon in this species, completion of a second generation across winter, between September and June, would be required for bivoltinism, a phenomenon not previously observed.
View Article and Find Full Text PDFThe spruce beetle, Dendroctonus rufipennis (Kirby), is an important mortality agent of native spruces throughout North America. The life-cycle duration of this species varies from 1 to 3 years depending temperature. The univoltine cycle (one generation per year) is thought to maximize outbreak risk and accelerate host mortality in established outbreaks.
View Article and Find Full Text PDFIn all organisms, phenotypic variability is an evolutionary stipulation. Because the development of poikilothermic organisms depends directly on the temperature of their habitat, environmental variability is also an integral factor in models of their phenology. In this paper we present two existing phenology models, the distributed delay model and the Sharpe and DeMichele model, and develop an alternate approach, called the Extended von Foerster model, based on the age-structured McKendrick-von Foerster partial differential model.
View Article and Find Full Text PDF