Introduction: Metabolic syndrome (MetS) is a metabolic disorder encompassing risk factors for cardiovascular disease and type 2 diabetes (T2D). In Mexico, the MetS is a national health problem in adults and children. Environmental and genetic factors condition the MetS.
View Article and Find Full Text PDFMetabolic syndrome (MetS), a cluster of risk factors, leads to cardiovascular disease (CVD) and type 2 diabetes (T2D). The second leading cause of mortality in Mexico is T2D. Genetic factors participate in the pathogenesis of MetS.
View Article and Find Full Text PDFIt has been presumed that increased susceptibility in Mexicans to type 2 diabetes (T2D) is attributed to the Native American genetic ancestry. Nonetheless, it is not known if there are private genetic variants that confer susceptibility to develop T2D in our population. The Maya indigenous group has the highest proportion of Native American ancestry (98%) which makes it a representative group of the original peoples of Mexico.
View Article and Find Full Text PDFBackground: Early identification of children with metabolic syndrome (MS) is essential to decrease the risk of developing diabetes and cardiovascular disease in adulthood. Detection of MS is however challenging because of the different definitions for diagnosis; as a result, preventive actions are not taken in some children at risk. The study objective was therefore to compare prevalence of MS in children according to the IDF, NCEP-ATP-III, Cook, de Ferranti and Weiss definitions, considering insulin resistance (IR) markers such as HOMA-IR and/or metabolic index (MI).
View Article and Find Full Text PDFAim: CYP2C9 is one of the major drug metabolizing enzymes, however, little is known about polymorphisms in CYP2C9 gene and pharmacological implications in Mexican indigenous populations. Thus, frequencies of CYP2C9*2 and CYP2C9*3 alleles were evaluated in indigenous groups located in northwest (Cora), center (Mazahua and Teenek), south (Chatino and Mixteco) and southeast (Chontal and Maya) regions Mexico.
Materials & Methods: Allelic discrimination was performed by real-time PCR.