Publications by authors named "Barbara Gleede"

The symmetric biphenol 3,3',5,5'-tetramethyl-2,2'-biphenol is a well-known ligand building block and is used in transition-metal catalysis. In the literature, there are several synthetic routes for the preparation of this exceptional molecule. Herein, the focus is on the sustainable electrochemical synthesis of 3,3',5,5'-tetramethyl-2,2'-biphenol.

View Article and Find Full Text PDF

Electrochemical side reactions, often referred to as "electrode fouling", are known to be a major challenge in electro-organic synthesis and the functionality of modern batteries. Often, polymerization of one or more components is observed. When reaching their limit of solubility, those polymers tend to adsorb on the surface of the electrode, resulting in a passivation of the respective electrode area, which may impact electrochemical performance.

View Article and Find Full Text PDF

The electroorganic C,C coupling of phenols to other aryl components is controlled by the fluoroalcohol-alcohol mixture solvents. Classical molecular dynamics and static density functional theory reveal that both kinds of solvents interact with the substrates, influencing the electronic structure of a phenoxyl radical intermediate in a cooperative manner to achieve maximal efficiency and selectivity. Simulations of the electrolyte-electrode interface showed that the substrates adsorb on the diamond surface in such a way that the repulsive fluorous-lipophilic interactions can be minimized and the attractive lipophilic-lipophilic interplay can be maximized, whereas the advantageous hydrogen bonding with the solvent can be retained.

View Article and Find Full Text PDF