Publications by authors named "Barbara Gasse"

Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene () produce enamel defects of varying severity.

View Article and Find Full Text PDF

Background: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders.

View Article and Find Full Text PDF

Background: In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods.

View Article and Find Full Text PDF
Article Synopsis
  • AMBN is an important enamel matrix protein linked to enamel formation and is conserved through vertebrate evolution; however, its specific functions are still not fully understood.
  • The study utilized computational methods to analyze 56 AMBN sequences from public databases, revealing that the protein evolves under moderate purifying selection and shows signs of positive selection especially in certain primates.
  • The findings highlight critical residues and motifs in AMBN that have been under strong selective pressure, underscoring their potential role in enamel disorders and suggesting areas for future research regarding their biological function.
View Article and Find Full Text PDF

Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.

View Article and Find Full Text PDF

Background: Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs).

View Article and Find Full Text PDF

ALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization.

View Article and Find Full Text PDF

Well studied in mammals, amelogenesis is less known at the molecular level in reptiles and amphibians. In the course of extensive studies of enamel matrix protein (EMP) evolution in tetrapods, we look for correlation between changes in protein sequences and temporospatial protein gene expression during amelogenesis, using an evo-devo approach. Our target is the major EMP, amelogenin (AMEL) that plays a crucial role in enamel structure.

View Article and Find Full Text PDF