Object: The intracranial pulse pressure is often increased when neuropathology is present, particularly in cases of increased intracranial pressure (ICP) such as occurs in hydrocephalus. This pulse pressure is assumed to originate from arterial blood pressure oscillations entering the cranium; the fact that there is a coupling between the arterial blood pressure and the ICP is undisputed. In this study, the nature of this coupling and how it changes under conditions of increased ICP are investigated.
View Article and Find Full Text PDFAcute metabolic acidosis has been shown to inhibit muscle protein synthesis, although little is known on the effect of acidosis of respiratory origin. The aim of this study was to investigate the effect of acute respiratory acidosis on tissue protein synthesis. Rats (n = 8) were made acidotic by increasing the CO2 content of inspired air to 12% for 1 hour.
View Article and Find Full Text PDFObjectives: The objective of this study was to evaluate the efficacy of nonwoven bioabsorbable nanofibrous membranes of poly(lactideco-glycolide) for prevention of postsurgery-induced abdominal adhesions.
Summary Background Data: Recent reports indicated that current materials used for adhesion prevention have only limited success. Studies on other bioabsorbable materials using a new fabrication technique demonstrated the promising potential of generating an improved and inexpensive product that is suitable for a variety of surgical applications.
Am J Physiol Endocrinol Metab
July 2004
In this study, we investigated the effect of acute metabolic acidosis on tissue protein synthesis. Groups of rats were made acidotic with intragastric administration of NH(4)Cl (20 mmol/kg body wt every 12 h for 24 h) or given equimolar amounts of NaCl (controls). Protein synthesis in skeletal muscle and a variety of different tissues, including lymphocytes, was measured after 24 h by injection of l-[(2)H(5)]phenylalanine (150 micromol/100 g body wt, 40 moles percent).
View Article and Find Full Text PDF