Publications by authors named "Barbara Ferry"

The extraordinary capabilities of the canine nose are increasingly being used by law enforcement agencies in many countries to solve and reconstruct crimes. As a result, this type of forensic evidence can be and is still being challenged in the courts. So far, only a few publications have addressed the jurisprudence concerning mantrailing.

View Article and Find Full Text PDF

Techniques of stereotaxic surgery are commonly used in research laboratories by a range of students, technicians, and researchers. To meet the evolving requirements imposed by international legislation, and to promote the implementation of 3R rules (replacement, reduction, and refinement) by reducing experimental error, animal morbidity, and mortality, it is essential that standard operating procedures and proper conduct following such complex surgeries be precisely described and respected. The present report shows how refinements of our own neurosurgical techniques over decades, have significantly reduced the number of animals (rats) used in experiments and improved the animals' well-being during the post-surgical recovery period.

View Article and Find Full Text PDF

Epileptic seizures constitute a significant comorbidity of Alzheimer's disease (AD), which are recapitulated in transgenic mouse models of amyloidogenesis. Here, we sought to evaluate the potential role of tau pathology regarding seizure occurrence. To this end, we performed intra-hippocampal electroencephalogram (EEG) recordings and PTZ (pentylenetetrazol) seizure threshold tests in THY-Tau22 transgenic mice of AD-like tau pathology.

View Article and Find Full Text PDF

A scent lineup is generally a procedure whereby a dog's alerting behavior is used to establish that the dog detects two scents, one from a crime scene and one from a suspect, as deriving from the same person. The aim of this article is to compare methodologies of using dogs in scent lineups as a means of identifying perpetrators of crimes. It is hoped that this comparative approach, looking at countries where the method is currently or has in the past been used, will help determine what issues should be addressed in order to assure that the scent lineup will have a future as a forensic technique.

View Article and Find Full Text PDF

Previous work has shown that β-adrenergic and GABAergic systems in the basolateral amygdala (BLA) are involved in the acquisition of conditioned odor aversion (COA) learning. The involvement of α-adrenoreceptors, however, is poorly documented. In a first experiment, male Long-Evans rats received infusions of 0.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a common consequence of exposure to a life-threatening event. Currently, pharmacological treatments are limited by high rates of relapse, and novel treatment approaches are needed. We have recently demonstrated that propranolol, a β-adrenergic antagonist, inhibited aversive memory reconsolidation in animals.

View Article and Find Full Text PDF

The present study is aimed at describing some aspects of the neural dynamics supporting discrimination of olfactory-tactile paired-associated stimuli during acquisition of new pairs and during recombination of previously learned pairs in the rat. To solve the task, animals have to identify one odor-texture (OT) combination associated with a food reward among three cups with overlapping elements. Previous experiments demonstrated that the lateral entorhinal cortex (LEC) is involved in the processes underlying OT acquisition, whereas the dorsal hippocampus (DH) is selectively involved in the recombination processes.

View Article and Find Full Text PDF

The hippocampal formation has been extensively described as a key component for object recognition in conjunction with place and context. The present study aimed at describing neural mechanisms in the hippocampal formation that support olfactory-tactile (OT) object discrimination in a task where space and context were not taken into account. The task consisted in discriminating one baited cup among three, each of them presenting overlapping olfactory or tactile elements.

View Article and Find Full Text PDF

Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training.

View Article and Find Full Text PDF

In a natural environment, avoidance of a particular food source is mostly determined by a previous intake experience during which sensory stimuli such as food odor, become aversive through a simple associative conditioned learning. Conditioned odor aversion learning (COA) is a food conditioning paradigm that results from the association between a tasteless scented solution (conditioned stimulus, CS) and a gastric malaise (unconditioned stimulus, US) that followed its ingestion. In the present experimental conditions, acquisition of COA also led to acquisition of aversion toward the context in which the CS was presented (conditioned context aversion, CCA).

View Article and Find Full Text PDF

The role of norepinephrine (NE) in the consolidation of inhibitory avoidance learning (IA) in rats is known to involve α1- and β-adrenoceptor systems in the basolateral nucleus of the amygdala (BLA). However, the amygdala also contains α2-adrenoceptor subtypes, and local microinfusions of the selective α2-adrenoceptor antagonist idazoxan and agonist UK 14,304 respectively into the BLA enhance and inhibit IA performances when administered before acquisition. The present study investigated whether the effects of idazoxan and UK 14,304 on IA were associated with changes in NE release within the BLA before and after one-trial inhibitory avoidance training.

View Article and Find Full Text PDF

A large variety of behaviors that are essential for animal survival depend on the perception and processing of surrounding smells present in the natural environment. In particular, food-search behavior, which is conditioned by hunger, is directly driven by the perception of odors associated with food, and feeding status modulates olfactory sensitivity. The orexinergic hypothalamic peptide orexin A (OXA), one of the central and peripheral hormones that triggers food intake, has been shown to increase olfactory sensitivity in various experimental conditions including the conditioned odor aversion learning paradigm (COA).

View Article and Find Full Text PDF

While the olfactory and tactile vibrissal systems have been extensively studied in the rat, the neural basis of these cross-modal associations is still elusive. Here we tested the hypothesis that the lateral entorhinal cortex (LEC) could be particularly involved. In order to tackle this question, we have developed a new behavioral paradigm which consists in finding one baited cup (+) among three, each of the cups presenting a different and specific odor/texture (OT) combination.

View Article and Find Full Text PDF

To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition.

View Article and Find Full Text PDF

Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions.

View Article and Find Full Text PDF

These experiments investigated the role of the alpha(2)-adrenoceptors of the basolateral nucleus of the amygdala (BLA) in modulating the retention of inhibitory avoidance (IA). In Experiment 1, male Sprague Dawley rats implanted with bilateral cannulae in the BLA received microinfusions of a selective alpha(2)-adrenoceptor antagonist idazoxan 20 min either before or immediately after training. Retention was tested 48 h later.

View Article and Find Full Text PDF

The importance of central beta-adrenergic system has been essentially investigated in aversive/emotional learning tasks. However, recent data suggest that the beta-adrenergic system is also required for incidental taste learning. In the present study we evaluated in rats whether beta-adrenergic receptor activity is required for taste habituation, an incidental taste learning, and also for conditioned taste aversion (CTA) learning, an associative learning.

View Article and Find Full Text PDF

Conditioned odor aversion (COA) is the avoidance of an odorized-tasteless solution (the conditioned stimulus, CS), the ingestion of which precedes toxicosis. Previous works have shown that the basolateral nucleus of the amygdala (BLA) is involved in the acquisition, and more precisely, the control of the CS memory trace, of COA. Since catecholamine depletion of the amygdala induced a deficit in the potentiated version of COA, this study investigated the role of the adrenergic system in the BLA during COA.

View Article and Find Full Text PDF

Conditioned odor aversion (COA) corresponds to the avoidance of an odorized-tasteless solution (conditioned stimulus, CS) previously paired with toxicosis. COA occurs only when the interstimulus interval (ISI) is kept short, suggesting that the memory trace of the odor is subject to rapid decay. Previous experiments have shown that the entorhinal cortex (EC) is involved in the acquisition of COA, since lesion of the EC rendered COA tolerant to long ISI.

View Article and Find Full Text PDF

Evidence from the effect of aspiration lesions of the entorhinal cortex (EC) has shown that this region is involved in conditioned odor-aversion (COA) learning--that is, the avoidance of an odorized tasteless solution the ingestion of which precedes toxicosis--by rendering COA tolerant to long odor-toxicosis delay. The present study examined whether neurotoxic lesions restricted to the lateral or medial parts of the EC, in comparison with large aspiration lesions, were sufficient to produce this effect. Male Long-Evans rats received odor-intoxication pairing with either a short (5-min) or long (120-min) delay between the presentation of the odor and toxicosis.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), cognitive decline is linked to cholinergic dysfunctions in the basal forebrain (BF), although the earliest neuronal damage is described in the entorhinal cortex (EC). In rats, selective cholinergic BF lesions or fiber-sparing EC lesions may induce memory deficits, but most often of weak magnitude. This study investigated, in adult rats, the effects on activity and memory of both lesions, alone or in combination, using 192 IgG-saporin (OX7-saporin as a control) and L-N-methyl-D-aspartate to destroy BF and EC neurons, respectively.

View Article and Find Full Text PDF