Publications by authors named "Barbara Enko"

A comprehensive study of photodegradation processes in optical sensing materials caused by photosensitized singlet oxygen in different polymers is presented. The stabilities of the polymers are accessed in the oxygen consumption measurements performed with help of optical oxygen sensors. Polystyrene and poly(phenylsilesquioxane) are found to be the most stable among the polymers investigated, whereas poly(2,6-dimethyl-p-phenylene oxide) and particularly poly(methyl methacrylate) and their derivatives show the fastest oxygen consumption.

View Article and Find Full Text PDF

Ten different polystyrene-derivatives were tested with respect to their potential use as matrix materials for optical oxygen sensors in combination with the platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin as indicator dye. Either halogen atoms or bulky residues were introduced as substituents on the phenyl ring. A fine-tuning of the sensor sensitivity was achieved, without compromising solubility of the indicator in the matrix by providing a chemical environment very similar to polystyrene (PS), a standard matrix in optical oxygen sensors.

View Article and Find Full Text PDF

An optical sensor concept utilizing the sensing layer as the light propagating layer and a new method to couple light into a planar waveguide is presented. The concept enables simple manufacturing by coating or printing techniques and the integration of organic (plastic) opto-electronic components.

View Article and Find Full Text PDF

Rivaling the best one: Thermal [2+2] cycloadditions of TCNE, TCNQ, and F(4)-TCNQ to N,N-dimethylanilino-substituted cyanoalkynes afforded a new class of organic super-acceptors featuring efficient intramolecular charge-transfer interactions. These acceptors rival the acceptor F(4)-TCNQ in the propensity for reversible electron uptake as well as in electron affinity (see figure), which makes them interesting as p-type dopants for potential application in optoelectronic devices.Thermal [2+2] cycloadditions of tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)-TCNQ) to N,N-dimethylanilino-substituted (DMA-substituted) alkynes bearing either nitrile, dicyanovinyl (DCV; -CH==C(CN)(2)), or tricyanovinyl (TCV; -C(CN)==C(CN)(2)) functionalities, followed by retro-electrocyclization, afforded a new class of stable organic super-acceptors.

View Article and Find Full Text PDF