To improve the properties of cytotoxic triterpenoid acids 1-5, a large set of hydrophilic esters was synthesized. We choose betulinic acid (1), dihydrobetulinic acid (2), 21-oxoacid 3 along with highly active des-E lupane acids 4 and 5 as a model set of compounds for esterification of which the properties needed to be improved. As ester moieties were used - methoxyethanol and 2-(2-methoxyethoxy)ethanol and glycolic unit (type a-d), pyrrolidinoethanol, piperidinoethanol and morpholinoethanol (type f-h), and monosaccharide groups (type i-l).
View Article and Find Full Text PDFDespite intensive research efforts, the distinct biological roles of two closely related estrogen receptors, ERα and ERβ, are only partially understood. Therefore, ligands selective for either of two isotypes are useful research tools because they allow for exerting a desired subset of biological effects mediated by only one of the receptors. Here we report on the synthesis of a new class of potent and selective ligands for ERα represented by a series of 17α-substituted estradiols bearing lipophilic perfluoroalkyl chains.
View Article and Find Full Text PDFThree types of brassinosteroid analogues with perfluoroalkylated side chains were synthesized by using alkene cross-metathesis of a brassinosteroid derivative bearing a terminal alkene moiety with different (perfluoroalkyl)propenes. The presence of the double bonds in the cross-metathesis products allowed a facile one-step double dihydroxylation to provide intermediates that after Baeyer-Villiger oxidation afforded the target compounds. Biological activity of the prepared analogues was tested in GABA(A) receptor, cytotoxic, and brassinolide activity, which reached in some cases the same range as their nonfluorinated analogues.
View Article and Find Full Text PDF