Objective: Dietary methionine restriction (MR) improves biomarkers of metabolic health, in part through coordinated increases in energy intake and energy expenditure (EE). Some metabolic benefits of dietary MR are secondary to its effects on energy balance, so this study's purpose was to examine how age at initiation of MR influences its effects on energy balance and body composition.
Methods: Energy balance was examined in rats provided control or MR diets for 9 months after weaning or in rats between 6 and 12 months of age.
Dietary methionine restriction (MR) produces an integrated series of biochemical and physiological responses that improve biomarkers of metabolic health, limit fat accretion, and enhance insulin sensitivity. Using transcriptional profiling to guide tissue-specific evaluations of molecular responses to MR, we report that liver and adipose tissue are the primary targets of a transcriptional program that remodeled lipid metabolism in each tissue. The MR diet produced a coordinated downregulation of lipogenic genes in the liver, resulting in a corresponding reduction in the capacity of the liver to synthesize and export lipid.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2010
Dietary methionine restriction (MR) limits fat deposition and decreases plasma leptin, while increasing food consumption, total energy expenditure (EE), plasma adiponectin, and expression of uncoupling protein 1 (UCP1) in brown and white adipose tissue (BAT and WAT). beta-adrenergic receptors (beta-AR) serve as conduits for sympathetic input to adipose tissue, but their role in mediating the effects of MR on energy homeostasis is unclear. Energy intake, weight, and adiposity were modestly higher in beta(3)-AR(-/-) mice on the Control diet compared with wild-type (WT) mice, but the hyperphagic response to the MR diet and the reduction in fat deposition did not differ between the genotypes.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2010
Dietary methionine restriction (MR) is a mimetic of chronic dietary restriction (DR) in the sense that MR increases rodent longevity, but without food restriction. We report here that MR also persistently increases total energy expenditure (EE) and limits fat deposition despite increasing weight-specific food consumption. In Fischer 344 (F344) rats consuming control or MR diets for 3, 9, and 20 mo, mean EE was 1.
View Article and Find Full Text PDF