Clin Cosmet Investig Dermatol
October 2012
Background: Arsenic is a ubiquitous environmental toxicant, and abnormalities of the skin are the most common outcomes of long-term, low-dose, chronic arsenic exposure. If the balance between keratinocyte proliferation, differentiation, and death is perturbed, pathologic changes of the epidermis may result, including psoriasis, atopic dermatitis, and certain forms of ichthyosis. Therefore, research investigations using in vitro human epidermal cells could help elucidate cellular and molecular processes in keratinocytes affected by arsenic.
View Article and Find Full Text PDFInorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood.
View Article and Find Full Text PDFArsenic is a toxic metalloid that causes skin cancer and binds to cysteine residues-a property that could be used to infer arsenic responsiveness of a target protein. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) result in amino acid substitutions and may alter arsenic binding with cysteine residues. Thus, the objective of this investigation was to identify and analyze nsSNPs that lead to substitutions to or from cysteine residues as an indication of increased or decreased arsenic responsiveness.
View Article and Find Full Text PDF