Publications by authors named "Barbara E Engelhardt"

Genetic perturbation of T cell receptor (TCR) T cells is a promising method to unlock better TCR T cell performance to create more powerful cancer immunotherapies, but understanding the changes to T cell behavior induced by genetic perturbations remains a challenge. Prior studies have evaluated the effect of different genetic modifications with cytokine production and metabolic activity assays. Live-cell imaging is an inexpensive and robust approach to capture TCR T cell responses to cancer.

View Article and Find Full Text PDF
Article Synopsis
  • T cell therapies, like CAR and TCR T cells, are emerging cancer treatments, but improving their effectiveness requires understanding their behavior in populations.
  • The authors developed advanced tools using live-cell imaging to track and analyze modified T cells interacting with tumor cells, focusing on their morphology, movement, and interactions.
  • They found that specific genetic modifications in TCR T cells led to longer interaction times and better activation against cancer cells, while other modifications increased T cell growth, paving the way for more effective cancer therapies.
View Article and Find Full Text PDF

Genomics methods have uncovered patterns in a range of biological systems, but obscure important aspects of cell behavior: the shapes, relative locations, movement, and interactions of cells in space. Spatial technologies that collect genomic or epigenomic data while preserving spatial information have begun to overcome these limitations. These new data promise a deeper understanding of the factors that affect cellular behavior, and in particular the ability to directly test existing theories about cell state and variation in the context of morphology, location, motility, and signaling that could not be tested before.

View Article and Find Full Text PDF

Spatial genomic technologies characterize the relationship between the structural organization of cells and their cellular state. Despite the availability of various spatial transcriptomic and proteomic profiling platforms, these experiments remain costly and labor-intensive. Traditionally, tissue slicing for spatial sequencing involves parallel axis-aligned sections, often yielding redundant or correlated information.

View Article and Find Full Text PDF

Spatially resolved genomic technologies have allowed us to study the physical organization of cells and tissues, and promise an understanding of local interactions between cells. However, it remains difficult to precisely align spatial observations across slices, samples, scales, individuals and technologies. Here, we propose a probabilistic model that aligns spatially-resolved samples onto a known or unknown common coordinate system (CCS) with respect to phenotypic readouts (for example, gene expression).

View Article and Find Full Text PDF

Spatially-resolved genomic technologies have shown promise for studying the relationship between the structural arrangement of cells and their functional behavior. While numerous sequencing and imaging platforms exist for performing spatial transcriptomics and spatial proteomics profiling, these experiments remain expensive and labor-intensive. Thus, when performing spatial genomics experiments using multiple tissue slices, there is a need to select the tissue cross sections that will be maximally informative for the purposes of the experiment.

View Article and Find Full Text PDF

Nonnegative matrix factorization (NMF) is widely used to analyze high-dimensional count data because, in contrast to real-valued alternatives such as factor analysis, it produces an interpretable parts-based representation. However, in applications such as spatial transcriptomics, NMF fails to incorporate known structure between observations. Here, we present nonnegative spatial factorization (NSF), a spatially-aware probabilistic dimension reduction model based on transformed Gaussian processes that naturally encourages sparsity and scales to tens of thousands of observations.

View Article and Find Full Text PDF

Background: Single-cell RNA-sequencing (scRNA-seq) technologies allow for the study of gene expression in individual cells. Often, it is of interest to understand how transcriptional activity is associated with cell-specific covariates, such as cell type, genotype, or measures of cell health. Traditional approaches for this type of association mapping assume independence between the outcome variables (or genes), and perform a separate regression for each.

View Article and Find Full Text PDF

Expression quantitative trait loci (eQTLs), or single-nucleotide polymorphisms that affect average gene expression levels, provide important insights into context-specific gene regulation. Classic eQTL analyses use one-to-one association tests, which test gene-variant pairs individually and ignore correlations induced by gene regulatory networks and linkage disequilibrium. Probabilistic topic models, such as latent Dirichlet allocation, estimate latent topics for a collection of count observations.

View Article and Find Full Text PDF
Article Synopsis
  • Petabytes of complex live cell and tissue imaging data are produced annually, offering significant potential to advance our understanding of biological processes at both the single-cell and multicellular levels.
  • Current analysis methods for these data are fragmented and tailored to individual users, which limits comprehensive analysis across various datasets and hinders scientific discoveries.
  • The authors propose a unified pipeline designed for the storage, segmentation, analysis, and statistical evaluation of live cell imaging datasets to enhance data analysis and insight generation.
View Article and Find Full Text PDF

Both provider- and protocol-driven electrolyte replacement have been linked to the over-prescription of ubiquitous electrolytes. Here, we describe the development and retrospective validation of a data-driven clinical decision support tool that uses reinforcement learning (RL) algorithms to recommend patient-tailored electrolyte replacement policies for ICU patients. We used electronic health records (EHR) data that originated from two institutions (UPHS; MIMIC-IV).

View Article and Find Full Text PDF

Gaussian processes (GPs) are a versatile nonparametric model for nonlinear regression and have been widely used to study spatiotemporal phenomena. However, standard GPs offer limited interpretability and generalizability for datasets with naturally occurring hierarchies. With large-scale, rapidly-updating electronic health record (EHR) data, we want to study patient trajectories across diverse patient cohorts while preserving patient subgroup structure.

View Article and Find Full Text PDF

A key problem in functional magnetic resonance imaging (fMRI) is to estimate spatial activity patterns from noisy high-dimensional signals. Spatial smoothing provides one approach to regularizing such estimates. However, standard smoothing methods ignore the fact that correlations in neural activity may fall off at different rates in different brain areas, or exhibit discontinuities across anatomical or functional boundaries.

View Article and Find Full Text PDF

Multicellular organisms rely on spatial signaling among cells to drive their organization, development, and response to stimuli. Several models have been proposed to capture the behavior of spatial signaling in multicellular systems, but existing approaches fail to capture both the autonomous behavior of single cells and the interactions of a cell with its neighbors simultaneously. We propose a spatiotemporal model of dynamic cell signaling based on Hawkes processes-self-exciting point processes-that model the signaling processes within a cell and spatial couplings between cells.

View Article and Find Full Text PDF

Histopathological images are used to characterize complex phenotypes such as tumor stage. Our goal is to associate features of stained tissue images with high-dimensional genomic markers. We use convolutional autoencoders and sparse canonical correlation analysis (CCA) on paired histological images and bulk gene expression to identify subsets of genes whose expression levels in a tissue sample correlate with subsets of morphological features from the corresponding sample image.

View Article and Find Full Text PDF

Single-cell technologies characterize complex cell populations across multiple data modalities at unprecedented scale and resolution. Multi-omic data for single cell gene expression, in situ hybridization, or single cell chromatin states are increasingly available across diverse tissue types. When isolating specific cell types from a sample of disassociated cells or performing in situ sequencing in collections of heterogeneous cells, one challenging task is to select a small set of informative markers that robustly enable the identification and discrimination of specific cell types or cell states as precisely as possible.

View Article and Find Full Text PDF

Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately enabling regulatory network re-engineering. Network inference from transcriptional time-series data requires accurate, interpretable, and efficient determination of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene network from transcriptional time-series data.

View Article and Find Full Text PDF

Angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 have been implicated in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). The expression of and in the lung epithelium might have implications for the risk of SARS-CoV-2 infection and severity of COVID-19. We use human genetic variants that proxy angiotensin-converting enzyme (ACE) inhibitor drug effects and cardiovascular risk factors to investigate whether these exposures affect lung and gene expression and circulating ACE2 levels.

View Article and Find Full Text PDF

Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release).

View Article and Find Full Text PDF
Article Synopsis
  • Modern single-cell RNA sequencing (scRNA-seq) technologies help scientists understand cellular differences by exploring various cell types and states, but analyzing the resulting high-dimensional data requires dimension reduction techniques.
  • The authors introduce a new model called the Gaussian process latent variable model (GPLVM), which uses a heavy-tailed Student's t-distribution to account for noise in raw, unfiltered gene count data and effectively estimates the underlying structure in scRNA-seq datasets.
  • Their method shows advantages over existing techniques by enabling better clustering, inferring cell development paths, and enhancing visualization of experimental data, making it useful for exploring and estimating uncertainty in cellular states.
View Article and Find Full Text PDF

Background: For real-time monitoring of hospital patients, high-quality inference of patients' health status using all information available from clinical covariates and lab test results is essential to enable successful medical interventions and improve patient outcomes. Developing a computational framework that can learn from observational large-scale electronic health records (EHRs) and make accurate real-time predictions is a critical step. In this work, we develop and explore a Bayesian nonparametric model based on multi-output Gaussian process (GP) regression for hospital patient monitoring.

View Article and Find Full Text PDF

How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction.

View Article and Find Full Text PDF
Article Synopsis
  • - Single-cell RNA-sequencing (scRNA-seq) allows for the detailed analysis of RNA expression at the single-cell level, but often suffers from "dropout" events where many transcripts show zero counts, complicating data analysis.
  • - To address these challenges, netNMF-sc is introduced as an algorithm that utilizes both cell and gene information to improve data analysis, employing a technique called network-regularized non-negative matrix factorization to produce a low-dimensional representation of transcript counts.
  • - The performance of netNMF-sc is shown to surpass existing methods in clustering cells and estimating gene interactions, particularly benefiting from datasets with high dropout rates and demonstrating resilience to variations in the gene interaction network used.
View Article and Find Full Text PDF

Laboratory testing is an integral tool in the management of patient care in hospitals, particularly in intensive care units (ICUs). There exists an inherent trade-off in the selection and timing of lab tests between considerations of the expected utility in clinical decision-making of a given test at a specific time, and the associated cost or risk it poses to the patient. In this work, we introduce a framework that learns policies for ordering lab tests which optimizes for this trade-off.

View Article and Find Full Text PDF

Autoantibodies have been associated with autoimmune diseases. However, studies have identified autoantibodies in healthy donors (HD) who do not develop autoimmune disorders. Here we provide evidence of a network of immunoglobulin G (IgG) autoantibodies targeting G protein-coupled receptors (GPCR) in HD compared to patients with systemic sclerosis, Alzheimer's disease, and ovarian cancer.

View Article and Find Full Text PDF