Publications by authors named "Barbara Dymerska"

Geometric distortion is a major limiting factor for spatial specificity in high-resolution fMRI using EPI readouts and is exacerbated at higher field strengths due to increased B field inhomogeneity. Prominent correction schemes are based on B field-mapping or acquiring reverse phase-encoded (reversed-PE) data. However, to date, comparisons of these techniques in the context of fMRI have only been performed on 2DEPI data, either at lower field or lower resolution.

View Article and Find Full Text PDF

Purpose: To explore the impact of temporal motion-induced coil sensitivity changes on CEST-MRI at 7T and its correction using interleaved volumetric EPI navigators, which are applied for real-time motion correction.

Methods: Five healthy volunteers were scanned via CEST. A 4-fold correction pipeline allowed the mitigation of (1) motion, (2) motion-induced coil sensitivity variations, , (3) motion-induced static magnetic field inhomogeneities, ΔB , and (4) spatially varying transmit RF field fluctuations, .

View Article and Find Full Text PDF

Purpose: To develop a rapid and accurate MRI phase-unwrapping technique for challenging phase topographies encountered at high magnetic fields, around metal implants, or postoperative cavities, which is sufficiently fast to be applied to large-group studies including Quantitative Susceptibility Mapping and functional MRI (with phase-based distortion correction).

Methods: The proposed path-following phase-unwrapping algorithm, ROMEO, estimates the coherence of the signal both in space-using MRI magnitude and phase information-and over time, assuming approximately linear temporal phase evolution. This information is combined to form a quality map that guides the unwrapping along a 3D path through the object using a computationally efficient minimum spanning tree algorithm.

View Article and Find Full Text PDF

Purpose: To assess the performance, in the presence of scanner instabilities, of three dynamic correction methods which integrate ∆B mapping into the chemical exchange saturation transfer (CEST) measurement and three established static ∆B -correction approaches.

Methods: A homogeneous phantom and five healthy volunteers were scanned with a CEST sequence at 7 T. The in vivo measurements were performed twice: first with unaltered system frequency and again applying frequency shifts during the CEST acquisition.

View Article and Find Full Text PDF

Objectives: Gradients in the static magnetic field caused by tissues with differing magnetic susceptibilities lead to regional variations in the effective echo time, which modifies both image signal and BOLD sensitivity. Local echo time changes are not considered in the most commonly used metric for BOLD sensitivity, temporal signal-to-noise ratio (tSNR), but may be significant, particularly at ultrahigh field close to air cavities (such as the sinuses and ear canals) and near gross brain pathologies and postoperative sites.

Materials And Methods: We have studied the effect of local variations in echo time and tSNR on BOLD sensitivity in 3 healthy volunteers and 11 patients with tumors, postoperative cavities, and venous malformations at 7 T.

View Article and Find Full Text PDF

Purpose: To develop a simple method for combining multi-echo phase information from a number of coils in an array that requires no volume coil or additional scans and yields signal-to-noise ratio-optimal images that reflect only ΔB0-related phase.

Theory And Methods: Two SNR optimal coil combination methods were developed which retrieve the ΔB0-related phase by determining the coil-dependent phase offsets. The first variant, MCPC-3D-S, requires the unwrapping of one phase image; the second variant, ASPIRE, allows unwrapping to be avoided if two echoes j and k satisfy the echo time relation m⋅TEk=(m+1)⋅TEj, where m is an integer, making this a particularly fast and robust approach.

View Article and Find Full Text PDF

Purpose: To assess the potential clinical utility of in vivo susceptibility-weighted imaging and quantitative susceptibility mapping of growth cartilage in the juvenile human knee at 7 T.

Methods: High-resolution gradient-echo images of the knees of six healthy children and adolescents aged 6 to 15 were acquired with a 28-channel coil at 7 T. Phase images from the coils were combined using a short echo-time reference scan method (COMPOSER).

View Article and Find Full Text PDF

Functional MRI is valuable in presurgical planning due to its non-invasive nature, repeatability, and broad availability. Using ultra-high field MRI increases the specificity and sensitivity, increasing the localization reliability and reducing scan time. Ideally, fMRI analysis for this application should identify unreliable runs and work even if the patient deviates from the prescribed task timing or if there are changes to the hemodynamic response due to pathology.

View Article and Find Full Text PDF

Purpose: To demonstrate a dedicated setup for ultrahigh resolution MR imaging of the human finger in vivo.

Methods: A radiofrequency coil was designed for optimized signal homogeneity and sensitivity in the finger at ultrahigh magnetic field strength (7 T), providing high measurement sensitivity. Imaging sequences (2D turbo-spin echo (TSE) and 3D magnetization-prepared rapid acquisition gradient echo (MPRAGE)) were adapted for high spatial resolution and good contrast of different tissues in the finger, while keeping acquisition time below 10 minutes.

View Article and Find Full Text PDF

Presurgical planning with fMRI benefits from increased reliability and the possibility to reduce measurement time introduced by using ultra-high field. Echo-planar imaging suffers, however, from geometric distortions which scale with field strength and potentially give rise to clinically significant displacement of functional activation. We evaluate the effectiveness of a dynamic distortion correction (DDC) method based on unmodified single-echo EPI in the context of simulated presurgical planning fMRI at 7T and compare it with static distortion correction (SDC).

View Article and Find Full Text PDF

The growing interest in ultra-high field MRI, with more than 35.000 MR examinations already performed at 7T, is related to improved clinical results with regard to morphological as well as functional and metabolic capabilities. Since the signal-to-noise ratio increases with the field strength of the MR scanner, the most evident application at 7T is to gain higher spatial resolution in the brain compared to 3T.

View Article and Find Full Text PDF

Phase imaging benefits from strong susceptibility effects at very high field and the high signal-to-noise ratio (SNR) afforded by multi-channel coils. Combining the information from coils is not trivial, however, as the phase that originates in local field effects (the source of interesting contrast) is modified by the inhomogeneous sensitivity of each coil. This has historically been addressed by referencing individual coil sensitivities to that of a volume coil, but alternative approaches are required for ultra-high field systems in which no such coil is available.

View Article and Find Full Text PDF

We propose a method to calculate field maps from the phase of each EPI in an fMRI time series. These field maps can be used to correct the corresponding magnitude images for distortion caused by inhomogeneity in the static magnetic field. In contrast to conventional static distortion correction, in which one 'snapshot' field map is applied to all subsequent fMRI time points, our method also captures dynamic changes to B which arise due to motion and respiration.

View Article and Find Full Text PDF

Objective: To develop an analysis method that is sensitive to non-model-conform responses often encountered in ultra-high field presurgical planning fMRI. Using the consistency of time courses over a number of experiment repetitions, it should exclude low quality runs and generate activation maps that reflect the reliability of responses.

Materials And Methods: 7 T fMRI data were acquired from six healthy volunteers: three performing purely motor tasks and three a visuomotor task.

View Article and Find Full Text PDF

Objective: The aim of this study was to compare quantitative and semiquantitative parameters (signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR], image quality, diagnostic confidence) from a standard brain magnetic resonance imaging examination encompassing common neurological disorders such as demyelinating disease, gliomas, cerebrovascular disease, and epilepsy, with comparable sequence protocols and acquisition times at 3 T and at 7 T.

Materials And Methods: Ten healthy volunteers and 4 subgroups of 40 patients in total underwent comparable magnetic resonance protocols with standard diffusion-weighted imaging, 2D and 3D turbo spin echo, 2D and 3D gradient echo and susceptibility-weighted imaging of the brain (10 sequences) at 3 T and 7 T. The subgroups comprised patients with either lesional (n = 5) or nonlesional (n = 4) epilepsy, intracerebral tumors (n = 11), demyelinating disease (n = 11) (relapsing-remitting multiple sclerosis [MS, n = 9], secondary progressive MS [n = 1], demyelinating disease not further specified [n = 1]), or chronic cerebrovascular disorders [n = 9]).

View Article and Find Full Text PDF

Purpose: To develop a simple method for combining phase images from multichannel coils that does not require a reference coil and does not entail phase unwrapping, fitting or iterative procedures.

Theory And Methods: At very short echo time, the phase measured with each coil of an array approximates to the phase offset to which the image from that coil is subject. Subtracting this information from the phase of the scan of interest matches the phases from the coils, allowing them to be combined.

View Article and Find Full Text PDF

Purpose: To develop a distortion correction method for echo planar imaging (EPI) that is able to measure dynamic changes in B .

Theory And Methods: The approach we propose is based on single-echo EPI with a jittering of the echo time between two values for alternate time points. Field maps are calculated between phase images from adjacent volumes and are used to remove distortion from corresponding magnitude images.

View Article and Find Full Text PDF

We studied exchange coupled composite (ECC) media with an out-of-plane easy axis consisting of hard magnetic L1(0) chemically ordered FePtCu alloy films and magnetically softer [Co/Pt](N) multilayer stacks. By tailoring the structural properties of the ternary FePtCu alloy and [Co/Pt](N) multilayers, we can tune the magnetic parameters of the composite in a wide range. This allowed us to address experimentally one of the most crucial properties determining the performance of ECC media, namely the pinning field of the magnetic domain wall present at the interface between the hard and soft layers.

View Article and Find Full Text PDF