Immune cells educated by the primary breast tumor and their secreted factors support the formation of bone pre-metastatic niche. Indeed, we showed that RANKL CD3 T cells, specific for the 4T1 mammary carcinoma cell line, arrive at the bone marrow before metastatic cells and set the pre-metastatic niche. In the absence of RANKL expressed by T cells, there is no pre-metastatic osteolytic disease and bone metastases are completely blocked.
View Article and Find Full Text PDFBreast cancer (BC) is a heterogeneous disease composed of multiple subtypes with different molecular characteristics and clinical outcomes. The metastatic process in BC depends on the transcription factors (TFs) related to epithelial-mesenchymal transition (EMT), including the master regulator Twist1. However, its role beyond EMT in BC subtypes remains unclear.
View Article and Find Full Text PDFStem Cell Rev Rep
December 2020
Classical Hodgkin lymphoma (cHL) cells overexpress heat-shock protein 90 (HSP90), an important intracellular signaling hub regulating cell survival, which is emerging as a promising therapeutic target. Here, we report the antitumor effect of celastrol, an anti-inflammatory compound and a recognized HSP90 inhibitor, in Hodgkin and Reed-Sternberg cell lines. Two disparate responses were recorded.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a heterogeneous disease characterized by myeloid precursor proliferation in the bone marrow, apoptosis reduction and differentiation arrest. Although there are several studies in this field, events related to disease initiation and progression remain unknown. The malignant transformation of hematopoietic stem cells (HSC) is thought to generate leukemic stem cells, and this transformation could be related to changes in mesenchymal stromal cell (hMSC) signaling.
View Article and Find Full Text PDFBackground: Signal transducer and activator of transcription 3 (STAT3) is an important transcriptional factor frequently associated with the proliferation and survival of a large number of distinct cancer types. However, the signaling pathways and mechanisms that regulate STAT3 activation remain to be elucidated.
Methods: In this study we took advantage of existing cellular models for chronic myeloid leukemia resistance, western blot, in vitro signaling, real time PCR, flow cytometry approaches for cell cycle and apoptosis evaluation and siRNA assay in order to investigate the possible relationship between STATIP1, STAT3 and CML resistance.
One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control.
View Article and Find Full Text PDFAcute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC.
View Article and Find Full Text PDFThe forkhead box (Fox) M1 gene belongs to a superfamily of evolutionarily conserved transcriptional regulators that are involved in a wide range of biological processes, and its deregulation has been implicated in cancer survival, proliferation and chemotherapy resistance. However, the role of FoxM1, the signaling involved in its activation and its role in leukemia are poorly known. Here, we demonstrate by gene promoter analysis, Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays that FoxM1 is a new target of the STAT3 transcriptional activator.
View Article and Find Full Text PDFBackground: The advanced phases of chronic myeloid leukemia (CML) are known to be more resistant to therapy. This resistance has been associated with the overexpression of ABCB1, which gives rise to the multidrug resistance (MDR) phenomenon. MDR is characterized by resistance to nonrelated drugs, and P-glycoprotein (encoded by ABCB1) has been implicated as the major cause of its emergence.
View Article and Find Full Text PDFDuring malignant transformation, changes in the expression profile of glycans may be involved in a variety of events, including the loss of cell-cell and cell-matrix adhesion, migration, invasion, and evasion of apoptosis. Therefore, modulation of glycan expression with drugs has promising therapeutic potential for various cancer types. In this study, we investigated the in vitro anticancer activity of the N-glycan biosynthesis inhibitors (swainsonine and tunicamycin) in cells derived from colorectal cancer (CRC).
View Article and Find Full Text PDFBackground: Although chronic myeloid leukemia (CML) treatment has improved since the introduction of imatinib mesylate (IM), cases of resistance have been reported. This resistance has been associated with the emergence of multidrug resistance (MDR) phenotype, as a BCR-ABL independent mechanism. The classic pathway studied in MDR promotion is ATP-binding cassette (ABC) family transporters expression, but other mechanisms that drive drug resistance are largely unknown.
View Article and Find Full Text PDFBackground Aims: Mesenchymal stromal cells (MSC) possess immunomodulatory activity both in vitro and in vivo. However, little information is available regarding their function during the initiation of immunologic responses through their interactions with monocytes. While many studies have shown that MSC impair the differentiation of monocytes into dendritic cells and macrophages, there are few articles showing the interaction between MSC and monocytes and none of them has addressed the question of monocyte subset modulation.
View Article and Find Full Text PDFBackground Aims: Bone marrow (BM) stromal cells, also referred to as mesenchymal stromal cells (MSC), can be expanded ex vivo and are able to differentiate along multiple lineages, including chondrocytes, osteoblasts and adipocytes. MSC are known to secrete a number of cytokines and regulatory molecules implicated in different aspects of hematopoiesis, and seem to modulate the immune system. MSC appear to be promising candidates for cellular therapy associated with BM transplantation (BMT).
View Article and Find Full Text PDF