Publications by authors named "Barbara Dobler"

Purpose: Total body irradiation (TBI) in extended source surface distance (SSD) is a common treatment technique before hematopoietic stem cell transplant. The lungs are organs at risk, which often are treated with a lower dose than the whole body.

Methods: This can be achieved by the application of blocks.

View Article and Find Full Text PDF

Men treated for localized prostate cancer by radiotherapy have often a remaining life span of 10 yr or more. Therefore, the risk for secondary malignancies should be taken into account. Plans for ten patients were evaluated which had been performed on an Oncentra® treatment planning system for a treatment with an Elekta Synergy™ linac with Agility™ head.

View Article and Find Full Text PDF

Background: This planning study compares different radiotherapy techniques for patients with pituitary adenoma, including flatness filter free mode (FFF), concerning plan quality and secondary malignancies for potentially young patients. The flatness filter has been described as main source of photon scatter.

Material And Methods: Eleven patients with pituitary adenoma were included.

View Article and Find Full Text PDF

Pediatric patients suffering from ependymoma are usually treated with cranial or craniospinal three-dimensional (3D) conformal radiotherapy (3DCRT). Intensity-modulated techniques spare dose to the surrounding tissue, but the risk for second malignancies may be increased due to the increase in low-dose volume. The aim of this study is to investigate if the flattening filter free (FFF) mode allows reducing the risk for second malignancies compared to the mode with flattening filter (FF) for intensity-modulated techniques and to 3DCRT.

View Article and Find Full Text PDF

This study on patients with localized prostate cancer was set up to investigate valuable differences using flattened beam (FB) and flattening filter free (FFF) mode in the application of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). For ten patients, four different plans were calculated with Oncentra planning system of Elekta, using Synergy machines: IMRT and VMAT, with and without flattening filter. Homogeneity and conformity indexes, dose to the organs at risk, and measurements of peripheral dose and dosimetric plan verification including record of the delivery times were analyzed and statistically evaluated.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate if the flattening filter free (FFF) irradiation mode of a linear accelerator (linac) is advantageous as compared to the flat beam (FF) irradiation mode in intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for carcinoma of the hypopharynx / larynx.

Methods: Four treatment plans were created for each of 10 patients for an Elekta Synergy linac with Agility collimating device, a dual arc VMAT and a nine field step and shoot IMRT each with and without flattening filter. Plan quality was compared considering target coverage and dose to the organs at risk.

View Article and Find Full Text PDF

Background: The aim of the study was to compare the two irradiation modes with (FF) and without flattening filter (FFF) for three different treatment techniques for simultaneous integrated boost radiation therapy of patients with right sided breast cancer.

Methods: An Elekta Synergy linac with Agility collimating device is used to simulate the treatment of 10 patients. Six plans were generated in Monaco 5.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess if using flattening filter free (FFF) mode in linear accelerators lowers the excess absolute risk (EAR) of second cancers compared to the flat beam mode (FF) during radiation therapy for right-sided breast cancer.
  • Six treatment plans were created for 10 patients using various techniques (IMRT, VMAT, and tVMAT) with and without flattening filters, and EAR was calculated for key organs.
  • Results showed that the FFF mode significantly reduces EAR, especially with tVMAT, making it the preferred choice for minimizing second cancer risk in this treatment context.
View Article and Find Full Text PDF

Introduction: A sweeping beam technique for total body irradiation in standard treatment rooms and for standard linear accelerators (linacs) is introduced, which does not require any accessory attached to the linac. Lung shielding is facilitated to reduce the risk of pulmonary toxicity. Additionally, the applicability of a commercial radiotherapy planning system (RTPS) is examined.

View Article and Find Full Text PDF

Purpose: Metallic dental implants cause severe streaking artifacts in computed tomography (CT) data, which affect the accuracy of dose calculations in radiation therapy. The aim of this study was to investigate the benefit of the metal artifact reduction algorithm iterative metal artifact reduction (iMAR) in terms of correct representation of Hounsfield units (HU) and dose calculation accuracy.

Materials And Methods: Heterogeneous phantoms consisting of different types of tissue equivalent material surrounding metallic dental implants were designed.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the potential of the flattening filter free (FFF) mode of a linear accelerator for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for patients with in-field recurrence of vertebral metastases.

Methods: An Elekta Synergy Linac with Agility™ head is used to simulate the treatment of ten patients with locally recurrent spinal column metastases. Four plans were generated for each patient treating the vertebrae sparing the spinal cord: Dual arc VMAT and nine field step and shoot IMRT each with and without flattening filter.

View Article and Find Full Text PDF

Purpose: Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy.

View Article and Find Full Text PDF

Background: This study investigates the impact of an automated image guided patient setup correction on the dose distribution for ten patients with in-field IMRT re-irradiation of vertebral metastases.

Methods: 10 patients with spinal column metastases who had previously been treated with 3D-conformal radiotherapy (3D-CRT) were simulated to have an in-field recurrence. IMRT plans were generated for treatment of the vertebrae sparing the spinal cord.

View Article and Find Full Text PDF

Background: The purpose of this study was to evaluate the impact of Cone Beam CT (CBCT) based setup correction on total dose distributions in fractionated frameless stereotactic radiation therapy of intracranial lesions.

Methods: Ten patients with intracranial lesions treated with 30 Gy in 6 fractions were included in this study. Treatment planning was performed with Oncentra® for a SynergyS® (Elekta Ltd, Crawley, UK) linear accelerator with XVI® Cone Beam CT, and HexaPOD™ couch top.

View Article and Find Full Text PDF

Background And Purpose: Fast and reliable tumor localization is an important part of today's radiotherapy utilizing new delivery techniques. This proof-of-principle study demonstrates the use of a method called herein 'stochastic triangulation' for this purpose. Stochastic triangulation uses very short imaging arcs and a few projections.

View Article and Find Full Text PDF

Background: Since December 2009 a new VMAT planning system tool is available in Oncentra MasterPlan v3.3 (Nucletron B.V.

View Article and Find Full Text PDF

This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons.

View Article and Find Full Text PDF

Methods and results for commissioning of the complete VMAT delivery chain are presented for the combination of Nucletron's Oncentra MasterPlan® v3.3 with Elekta's Mosaiq® v1.6 and SynergyS® linac.

View Article and Find Full Text PDF

Background: Several comparison studies have shown the capability of VMAT to achieve similar or better plan quality as IMRT, while reducing the treatment time. The experience of VMAT in a multi vendor environment is limited. We compared the plan quality and performance of VMAT to IMRT and we investigate the effects of varying various user-selectable parameters.

View Article and Find Full Text PDF

Background And Purpose: The purpose of this study was to assess plan quality and treatment time achievable with the new VMAT optimization tool implemented in the treatment planning system Oncentra MasterPlan® as compared to IMRT for Elekta SynergyS® linear accelerators.

Materials And Methods: VMAT was implemented on a SynergyS® linear accelerator (Elekta Ltd., Crawley, UK) with Mosaiq® record and verify system (IMPAC Medical Systems, Sunnyvale, CA) and the treatment planning system Oncentra MasterPlan® (Nucletron BV, Veenendaal, the Netherlands).

View Article and Find Full Text PDF

Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions.

Methods And Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY).

View Article and Find Full Text PDF

The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10 degrees were calculated on a CT scan of I'mRT MatriXX.

View Article and Find Full Text PDF

The check of dosimetry of the intraoperative radiotherapy system Intrabeam is predefined by the manufacture (Zeiss). The purpose of the study was to develop and implement a method to verify the internal dosimetry of Intrabeam (Zeiss). Additionally the long-term stability of Intrabeam was checked for dose and isotropy.

View Article and Find Full Text PDF

The purpose of the study was to investigate the potential of direct machine parameter optimization (DMPO) to achieve parotid sparing without compromising target coverage in IMRT of oropharyngeal cancer as compared to fluence modulation with subsequent leaf sequencing (IM) and forward planned 2-step arc therapy (IMAT). IMRT plans were generated for 10 oropharyngeal cancer patients using DMPO and IM. The resulting dose volume histograms (DVH) were evaluated with regard to compliance with the dose volume objectives (DVO) and plan quality.

View Article and Find Full Text PDF