Publications by authors named "Barbara Del Bello"

Background: Glioblastoma is a highly aggressive brain tumor. A big effort is required to find novel molecules which can cross the blood-brain barrier and efficiently kill these tumor cells. In this perspective, trehalose (α-glucopyranosyl-[1→1]-α-D-glucopyranoside), found in various dietary sources and used as a safe nutrient supplement, attracted our attention for its pleiotropic effects against tumor cells.

View Article and Find Full Text PDF

Autoantibodies to nuclear and cytoplasmic antigens are commonly detected by indirect immunofluorescence (IIF) on HEp-2 cells, and three major staining patterns (nuclear, cytoplasmic, and mitotic) are distinguished. Here, we report an atypical cytoplasmic pattern, not described so far, observed in the serum of a patient with a controversial diagnosis of systemic lupus erythematosus (SLE). Moreover, for the first time, we have revealed the presence of autoantibodies against the microtubule-associated light-chain 3 (LC3) protein, which plays a key role in the autophagic process.

View Article and Find Full Text PDF

Objective: To assess the effect of ulipristal acetate (UPA) on the autophagic process of uterine leiomyoma cells.

Design: In vitro study in primary cultures of leiomyoma and myometrial cells isolated from biopsy specimen, and gene expression evaluation in biopsy material.

Setting: Cellular pathology laboratory.

View Article and Find Full Text PDF

Cutaneous melanomas frequently metastasize to the brain, with temozolomide (TMZ) plus radiotherapy (RT) offering little control of these lesions. We tested whether trehalose, a natural glucose disaccharide proved to induce autophagy, could enhance the effect of TMZ and ionizing radiation (IR). In two melanoma cell lines (A375 and SK-Mel-28), which greatly differ in chemosensitivity and radiosensitivity, trehalose significantly inhibited short-term cell proliferation and also enhanced IR-induced cytostasis.

View Article and Find Full Text PDF

Objective: To evaluate the occurrence of the autophagic process in ovarian endometriomas compared with eutopic endometrium of affected women and with normal endometrium of healthy women.

Design: Biochemical and molecular study in tissue extracts.

Setting: University cellular pathology laboratory and university hospital.

View Article and Find Full Text PDF

Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells.

View Article and Find Full Text PDF

Calpains are a complex family of ubiquitous or tissue-specific cysteine proteases that proteolyze a variety of substrates (leading to their degradation or functional modulation) and are implicated in several pathophysiological phenomena. In tumor cell biology, calpains are implicated in a triple way: they are involved in different processes crucial for tumor progression, including cell proliferation, apoptotic cell death, survival mechanisms, migration and invasiveness; they have aberrant expression in several human cancers; a variety of anticancer drugs induce cytotoxicity through activation of calpains or the latter can influence response to therapy. This review covers established and recent literature showing these diverse aspects in tumor cells.

View Article and Find Full Text PDF

We have developed a series of pH- and temperature-stimuli-sensitive vinyl hydrogels, bearing α-amino acid residues (L-phenylalanine, L-valine) and incorporating magnetic nanoparticles of different chemical compositions (CoFe2O4 and Fe3O4). The goal was to study the potential applications of these nanocomposites in the controlled release of doxorubicin (DOXO), a potent anticancer drug. The strength of the electrostatic interaction between the protonated nitrogen of the DOXO molecule and the ionized carboxylic groups of the hydrogel allowed effective control of the drug release rate in saline solutions.

View Article and Find Full Text PDF

The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response.

View Article and Find Full Text PDF

Two acrylic hydrogels, of low cross-linking content and carrying the L-valine residues, were synthesized and studied as a platform to load and release the chemotherapeutic agent cisplatin. The platinum(II)-complex species showed a well-defined stoichiometric ratio in which two carboxylate groups of the collapsing gel coordinate a metal center; this was confirmed by FT-IR spectra. When loaded in water, a zero-order release rate of platinum(II)-species was shown in the physiologic solution (PBS, pH 7.

View Article and Find Full Text PDF

An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma.

View Article and Find Full Text PDF

Hydrogels containing alpha-amino acid residues (L-phenylalanine, L-histidine) were used to complex the chemotherapeutic agent cisplatin. The release of the drug in phosphate buffer solution showed an initial burst effect, followed by a near zero-order release phase over the seven days of reported period. Unlike the nonreleasing pattern of the hydrogel poly(N-acryloyl-L-phenylalanine-co-N-isopropylacrylamide) (CP2), the homopolymer poly(N-acryloyl-L-phenylalanine) (P9) hydrogel showed a released amount of cisplatin loaded from a water/DMSO mixture that was three times greater than that loaded from simple water.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a widely expressed cytokine involved in various biological processes. Although MIF's functions in cancer have not been completely elucidated, its expression has usually been correlated with tumour progression and aggressiveness, and it is currently discussed as a new promising target for novel therapies. Recent studies seem to confirm its active role in melanoma pathobiology; however, its expression has not yet been extensively studied in melanocytic tumours.

View Article and Find Full Text PDF

Apoptosis protease-activating factor-1 (Apaf-1), which plays a central role in the formation of the apoptosome, is absent or poorly expressed (because of a transcriptional silencing by methylation) in a substantial percentage of metastatic melanomas and melanoma cell lines, which are unable to activate caspase-9 and execute the mitochondrial pathway of apoptosis. We studied cisplatin-induced apoptosis of the Apaf-1-positive human metastatic Me665/2/21 melanoma cells. Our results indicate that caspase-7 is already processed in still-adhering cells and such activation, contrary to the common view, precedes caspase-3 processing.

View Article and Find Full Text PDF

c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis.

View Article and Find Full Text PDF

Apoptosis protease-activating factor-1 (Apaf-1), the central element in the mitochondrial pathway of apoptosis, is frequently absent or poorly expressed in metastatic melanomas, a tumor type showing a low degree of spontaneous apoptosis and a poor response to conventional therapies. In the present study, we used the Apaf-1-positive Me665/2/21 melanoma cell line to investigate the fate of Apaf-1 during cisplatin-induced apoptosis. As novel findings described for the first time in melanoma cells, we observed that Apaf-1 was markedly decreased during apoptosis, already at early stages of cell damage; concurrently, an immunoreactive N-terminal fragment of congruent with 26 kDa was evident.

View Article and Find Full Text PDF

Intrinsic and acquired multidrug-resistance (MDR) and the activity of the enzyme telomerase have been demonstrated in human melanoma. A direct regulation of the MDR pathways and of telomerase by interpheron-alpha (IFN-alpha), which is currently used in the therapy of advanced cutaneous melanoma, has also been hypothesized. In this study, we used five melanoma cell lines not selected in vitro for drug resistance (Me665/2/21, Me665/2/60, HT-144, SK-MEL-28, and SK-MEL-5), which in a previous study, had shown different responses to IFN-alpha in terms of proliferation, apoptosis, telomerase activity and expression of mRNA for the human telomerase reverse transcriptase (hTERT).

View Article and Find Full Text PDF

Alterations of protein kinase and protein phosphatase activities have been described in a number of tumors. Redox changes, such as in conditions of oxidant stress, have been reported to affect the cellular protein kinase/phosphatase balance. A basal production of reactive oxygen species (ROS), such as hydrogen peroxide (H(2)O(2)), exists in tumor cells, and the membrane-bound ecto-enzyme gamma-glutamyltransferase (GGT)-overexpressed in a variety of malignant tumors-is one of the mechanisms capable of promoting such a production.

View Article and Find Full Text PDF