Cleft palate has been linked to both genetic and environmental factors that perturb key events during palatal morphogenesis. As a developmental outcome, it presents a challenging, mechanistically complex endpoint for predictive modeling. A data set of 500 chemicals evaluated for their ability to induce cleft palate in animal prenatal developmental studies was compiled from Toxicity Reference Database and the biomedical literature, which included 63 cleft palate active and 437 inactive chemicals.
View Article and Find Full Text PDFMethods Mol Biol
November 2019
The morphogenesis of the secondary palate provides an interesting model for many of the processes involved in embryonic development. A number of in vitro models have been used to study craniofacial development, including whole embryo culture, palatal mesenchymal and micromass cell cultures, and Trowell-like palatal cultures in which dissected palates are cultured individually or as pairs in contact on a support above medium. This chapter presents a detailed protocol for the culture of maxillary midfacial tissues, including the palatal shelves, in suspension culture.
View Article and Find Full Text PDFEmbryologic development involves cell differentiation and organization events that are unique to each tissue and organ and are susceptible to developmental toxicants. Animal models are the gold standard for identifying putative teratogens, but the limited throughput of developmental toxicological studies in animals coupled with the limited concordance between animal and human teratogenicity motivates a different approach. In vitro organoid models can mimic the three-dimensional (3D) morphogenesis of developing tissues and can thus be useful tools for studying developmental toxicology.
View Article and Find Full Text PDFBackground: Cleft palate (CP) is a common birth defect, occurring in an estimated 1 in 1,000 births worldwide. The secondary palate is formed by paired palatal shelves, consisting of a mesenchymal core with an outer layer of epithelial cells that grow toward each other, attach, and fuse. One of the mechanisms that can cause CP is failure of fusion, that is, failure to remove the epithelial seam between the palatal shelves to allow the mesenchyme confluence.
View Article and Find Full Text PDFEpithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells.
View Article and Find Full Text PDFCrosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance.
View Article and Find Full Text PDFPersistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and cause hepatocellular steatosis. However, the molecular mechanism of PFAAs interference with lipid metabolism remains to be elucidated.
View Article and Find Full Text PDFThe 2011 EPA trichloroethylene (TCE) IRIS assessment, used developmental cardiac defects from a controversial drinking water study in rats (Johnson et al. [51]), along with several other studies/endpoints to derive reference values. An updated literature search of TCE-related developmental cardiac defects was conducted.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2015
The 3T3-L1 preadipocyte culture system has been used to examine numerous compounds that influence adipocyte differentiation or function. The perfluoroalkyl acids (PFAAs), used as surfactants in a variety of industrial applications, are of concern as environmental contaminants that are detected worldwide in human serum and animal tissues. This study was designed to evaluate the potential for PFAAs to affect adipocyte differentiation and lipid accumulation using mouse 3T3-L1 cells.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are found globally in the environment, detected in humans and wildlife, and are typically present as mixtures of PFAA congeners. Mechanistic studies have found that responses to PFAAs are mediated in part by PPARα. Our previous studies showed that individual PFAAs activate PPARα transfected into COS-1 cells.
View Article and Find Full Text PDFWhile perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) detected in the environment. Using a transient transfection assay developed in COS-1 cells, our group has previously evaluated a variety of PFAAs for activity associated with activation of peroxisome proliferator-activated receptor alpha (PPARα). Here we use primary heptatocytes to further assess the biological activity of a similar group of PFAAs using custom designed Taqman Low Density Arrays.
View Article and Find Full Text PDFThis study is a follow-up to a paper by Carr et al. that determined a design structure to optimally test for departures from additivity in a fixed ratio mixture of four perfluoroalkyl acids (PFAAs) using an in vitro transiently-transfected COS-1 PPARα reporter model with a mixing ratio that is based on average serum levels in NHANES subjects. Availability of information regarding potential for additivity of PFAAs in mixtures is critically important for risk assessors who are concerned with the ability of the compounds to affect human health and impact ecological systems.
View Article and Find Full Text PDFPPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARα is required for PFOA-induced developmental toxicity.
View Article and Find Full Text PDFPerfluorinated alkyl acids (PFAAs) are manufactured surfactants found globally in the environment and in tissues of humans and wildlife. Several PFAAs adversely affect rodents and activation of PPARα is thought to be their mode of action. Our previous study demonstrated that some PFAAs activate mouse and human PPARα in transiently transfected COS-1 cells.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) is a perfluoroalkyl acid (PFAA) and a persistent environmental contaminant found in the tissues of humans and wildlife. Although blood levels of PFOS have begun to decline, health concerns remain because of the long half-life of PFOS in humans. Like other PFAAs, such as, perfluorooctanoic acid (PFOA), PFOS is an activator of peroxisome proliferator-activated receptor-alpha (PPARα) and exhibits hepatocarcinogenic potential in rodents.
View Article and Find Full Text PDFPerfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα). In the current study, we used PPARα knockout (KO) and 129S1/SvlmJ wild-type (WT) mice to investigate the role of PPARα in mediating PFNA-induced in vivo effects.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examines expression of PPARalpha, beta, and gamma mRNA and protein in human fetal tissues.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
August 2010
Dates of special, historical significance, such as the 50th anniversary of the founding of the Teratology Society, prompt a desire to pause and look back and contemplate where we began, how far we have come, and consider the future for our scientific endeavors. The study of the etiology of cleft palate extends many years into the past and was a subject of interest to many of the founding members of the Teratology Society. This research area was intensively pursued and spawned a vast portfolio of published research.
View Article and Find Full Text PDFThe adverse consequences of developmental exposures to perfluorooctanoic acid (PFOA) are established in mice, and include impaired development of the mammary gland (MG). However, the relationships between timing or route of exposure, and consequences in the MG have not been characterized. To address the effects of these variables on the onset and persistence of MG effects in female offspring, timed pregnant CD-1 dams received PFOA by oral gavage over various gestational durations.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily and there are three primary subtypes, PPARalpha, beta, and gamma. These receptors regulate important physiological processes that impact lipid homeostasis, inflammation, adipogenesis, reproduction, wound healing, and carcinogenesis. These nuclear receptors have important roles in reproduction and development and their expression may influence the responses of an embryo exposed to PPAR agonists.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is a chemical used in the production of fluoropolymers. Its persistence in the environment and presence in humans and wildlife has raised health concerns. Liver tumor induction by PFOA is thought to be mediated in rodents by PPAR-alpha.
View Article and Find Full Text PDFHealth concerns have been raised because perfluorooctanoic acid (PFOA) is commonly found in the environment and can be detected in humans. In rodents, PFOA is a carcinogen and a developmental toxicant. PFOA is a peroxisome proliferator-activated receptor alpha (PPARalpha) activator; however, PFOA is capable of inducing heptomegaly in the PPARalpha-null mouse.
View Article and Find Full Text PDF