Publications by authors named "Barbara Crandall-Stotler"

Liverworts (Marchantiophyta) are among the earliest diverging lineages of extant land plants. Among their unique features, most liverworts contain membrane-bound oil bodies, organelles that accumulate diverse secondary metabolites, especially terpenoids. In contrast to the rich information on liverwort terpenoid chemistry, little is known about their biosynthesis.

View Article and Find Full Text PDF
Article Synopsis
  • Phylogenetic analyses of bryophytes reveal significant variability in evolutionary relationships among land plants, with some consistency found in a common unrooted tree across studies.
  • Despite their complexity, relationships within mosses, liverworts, and hornworts largely align with previous findings, although the results vary depending on the gene sets analyzed.
  • Examination of the plastid genomes indicates that while structural changes are minimal among bryophytes, some unexpected traits, like the retention of the tufA locus in certain mosses, challenge previous assumptions about plastome evolution.
View Article and Find Full Text PDF

Methyl (E)-cinnamate is a specialized metabolite that occurs in a variety of land plants. In flowering plants, it is synthesized by cinnamic acid methyltransferase (CAMT) that belongs to the SABATH family. While rarely reported in bryophytes, methyl (E)-cinnamate is produced by some liverworts of the Conocephalum conicum complex, including C.

View Article and Find Full Text PDF

The vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, whereas genes similar to microbial TPS genes have been recently identified in the lycophyte Selaginella moellendorffii The goal of this study was to investigate the distribution, evolution, and biochemical functions of microbial terpene synthase-like (MTPSL) genes in other plants.

View Article and Find Full Text PDF

A working checklist of accepted taxa worldwide is vital in achieving the goal of developing an online flora of all known plants by 2020 as part of the Global Strategy for Plant Conservation. We here present the first-ever worldwide checklist for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) that includes 7486 species in 398 genera representing 92 families from the two phyla. The checklist has far reaching implications and applications, including providing a valuable tool for taxonomists and systematists, analyzing phytogeographic and diversity patterns, aiding in the assessment of floristic and taxonomic knowledge, and identifying geographical gaps in our understanding of the global liverwort and hornwort flora.

View Article and Find Full Text PDF

We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures.

View Article and Find Full Text PDF

The systematic placement of Frullaniaherzogii has been contentious since its description six decades ago. Over the years it has been interpreted as either a member of the genus Frullania or segregated into its own genus, Neohattoria, due to morphological similarities with both Frullania and Jubula. Here we provide molecular evidence that supports the recognition of the genus Neohattoria and its inclusion within the Jubulaceae, together with Jubula and Nipponolejeunea.

View Article and Find Full Text PDF

Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery.

View Article and Find Full Text PDF

Phylogenetic relationships among the four major lineages of land plants (liverworts, mosses, hornworts, and vascular plants) remain vigorously contested; their resolution is essential to our understanding of the origin and early evolution of land plants. We analyzed three different complementary data sets: a multigene supermatrix, a genomic structural character matrix, and a chloroplast genome sequence matrix, using maximum likelihood, maximum parsimony, and compatibility methods. Analyses of all three data sets strongly supported liverworts as the sister to all other land plants, and analyses of the multigene and chloroplast genome matrices provided moderate to strong support for hornworts as the sister to vascular plants.

View Article and Find Full Text PDF