Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish-sample numbers on BAF estimates.
View Article and Find Full Text PDFMercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hg(fish)) divided by the water Hg concentration (Hg(water)) and, consequently, are sensitive to sampling and analysis artifacts for fish and water. We evaluated the influence of water sample timing, filtration, and mercury species on the modeled relation between game fish and water mercury concentrations across 11 streams and rivers in five states in order to identify optimum Hg(water) sampling approaches.
View Article and Find Full Text PDFWe studied lower food webs in streams of two mercury-sensitive regions to determine whether variations in consumer foraging strategy and resultant dietary carbon signatures accounted for observed within-site and among-site variations in consumer mercury concentration. We collected macroinvertebrates (primary consumers and predators) and selected forage fishes from three sites in the Adirondack Mountains of New York, and three sites in the Coastal Plain of South Carolina, for analysis of mercury (Hg) and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N). Among primary consumers, scrapers and filterers had higher MeHg and more depleted δ(13)C than shredders from the same site.
View Article and Find Full Text PDF