Previously, we showed that an aberrant accumulation of activated Ras in mitochondria correlates with an increase in apoptosis. In this article, we show that lack of trehalose-6P-synthase, known to trigger apoptosis in Saccharomyces cerevisiae, induces localization of active Ras proteins in mitochondria, confirming the above-mentioned correlation. Next, by characterizing the ras1Δ and ras2Δ mutants, we show that active Ras2 proteins, which accumulate in the mitochondria following addition of acetic acid (a pro-apoptotic stimulus), are likely the GTPases involved in regulated cell death, while active Ras1 proteins, constitutively localized in mitochondria, might be involved in a pro-survival molecular machinery.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2020
In previous papers we showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type yeast cells growing exponentially on glucose, while an aberrant accumulation of activated Ras in mitochondria correlated to mitochondrial dysfunction, accumulation of ROS and regulated cell death. Here we show that also in a strain lacking Snf1, the homolog of the AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae, activated Ras proteins accumulate mainly in these organelles, suggesting an antiapoptotic role for this protein, beside its well-known function in glucose repression. Indeed, in this paper we show that Snf1 protects against apoptosis in Saccharomyces cerevisiae.
View Article and Find Full Text PDFProsthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, but a gold standard for PJI diagnosis is still lacking. Advanced glycation end products (AGEs) are proinflammatory molecules inducing intracellular oxidative stress (OS) after binding to their cell membrane receptors (RAGE). The aim of this study was to evaluate plasmatic soluble receptor for advanced glycation end products (sRAGE), as a new OS and infection marker correlating sRAGE to the level of OS and antioxidant defenses, in PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI.
View Article and Find Full Text PDF