Bacteria dysbiosis and its accompanying inflammation or compromised mucosal integrity is associated with an increased risk of HIV-1 transmission. However, HIV-1 may also bind bacteria or bacterial products to impact infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins.
View Article and Find Full Text PDFis a Gram-positive bacterial species that typically colonizes the human oral cavity, but can also cause local or systemic diseases. Serine-rich repeat (SRR) glycoproteins exposed on the bacterial surface bind to sialylated glycans on human salivary, plasma, and platelet glycoproteins, which may contribute to oral colonization as well as endocardial infections. Despite a conserved overall domain organization of SRR adhesins, the Siglec-like binding regions (SLBRs) are highly variable, affecting the recognition of a wide range of sialoglycans.
View Article and Find Full Text PDFBacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility.
View Article and Find Full Text PDFGlycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions.
View Article and Find Full Text PDFBacterial binding to host receptors underlies both commensalism and pathogenesis. Many streptococci adhere to protein-attached carbohydrates expressed on cell surfaces using Siglec-like binding regions (SLBRs). The precise glycan repertoire recognized may dictate whether the organism is a strict commensal versus a pathogen.
View Article and Find Full Text PDFWe pursued the hypothesis that specific glycans can be used to distinguish breast cancer stem cells (CSCs) and influence their function. Comparison of CSCs and non-CSCs from multiple breast cancer models revealed that CSCs are distinguished by expression of α2,3 sialylated core2 O-linked glycans. We identified a lectin, SLBR-N, which binds to O-linked α2,3 sialic acids, that was able to enrich for CSCs in vitro and in vivo.
View Article and Find Full Text PDFand , commensal bacteria present in the oral cavity of healthy individuals, upon entry into the bloodstream can become pathogenic, causing infective endocarditis (IE). Sialic acid-binding serine-rich repeat adhesins on the microbial surface represent an important factor of successful infection to cause IE. They contain Siglec-like binding regions (SLBRs) that variously recognize different repertoires of -glycans, with some strains displaying high selectivity and others broader specificity.
View Article and Find Full Text PDFStreptococcus gordonii and Streptococcus sanguinis are primary colonizers of tooth surfaces and are generally associated with oral health, but can also cause infective endocarditis (IE). These species express "Siglec-like" adhesins that bind sialylated glycans on host glycoproteins, which can aid the formation of infected platelet-fibrin thrombi (vegetations) on cardiac valve surfaces. We previously determined that the ability of S.
View Article and Find Full Text PDFMucins are a large family of heavily O-glycosylated proteins that cover all mucosal surfaces and constitute the major macromolecules in most body fluids. Mucins are primarily defined by their variable tandem repeat (TR) domains that are densely decorated with different O-glycan structures in distinct patterns, and these arguably convey much of the informational content of mucins. Here, we develop a cell-based platform for the display and production of human TR O-glycodomains (~200 amino acids) with tunable structures and patterns of O-glycans using membrane-bound and secreted reporters expressed in glycoengineered HEK293 cells.
View Article and Find Full Text PDFThe serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB).
View Article and Find Full Text PDFInfective endocarditis (IE) is a cardiovascular disease often caused by bacteria of the viridans group of streptococci, which includes Streptococcus gordonii and Streptococcus sanguinis. Previous research has found that serine-rich repeat (SRR) proteins on the S. gordonii bacterial surface play a critical role in pathogenesis by facilitating bacterial attachment to sialylated glycans displayed on human platelets.
View Article and Find Full Text PDFialic acid-binding mmunolobulin-like tins (Siglec)-like domains of streptococcal serine-rich repeat (SRR) adhesins recognize sialylated glycans on human salivary, platelet, and plasma glycoproteins via a YTRY sequence motif. The SRR adhesin from strain SK1 has tandem sialoglycan-binding domains and has previously been shown to bind sialoglycans with high affinity. However, both domains contain substitutions within the canonical YTRY motif, making it unclear how they interact with host receptors.
View Article and Find Full Text PDFStreptococcus gordonii and Streptococcus sanguinis are primary colonizers of the tooth surface. Although generally non-pathogenic in the oral environment, they are a frequent cause of infective endocarditis. Both streptococcal species express a serine-rich repeat surface adhesin that mediates attachment to sialylated glycans on mucin-like glycoproteins, but the specific sialoglycan structures recognized can vary from strain to strain.
View Article and Find Full Text PDFThe structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates.
View Article and Find Full Text PDFIn addition to SecA of the general Sec system, many Gram-positive bacteria, including mycobacteria, express SecA2, a second, transport-associated ATPase. SecA2s can be subdivided into two mechanistically distinct types: (i) SecA2s that are part of the accessory Sec (aSec) system, a specialized transporter mediating the export of a family of serine-rich repeat (SRR) glycoproteins that function as adhesins, and (ii) SecA2s that are part of multisubstrate systems, in which SecA2 interacts with components of the general Sec system, specifically the SecYEG channel, to export multiple types of substrates. Found mainly in streptococci and staphylococci, the aSec system also contains SecY2 and novel accessory Sec proteins (Asps) that are required for optimal export.
View Article and Find Full Text PDFMucin domains are densely -glycosylated modular protein domains that are found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are known to be key players in a host of human diseases, especially cancer, wherein mucin expression and glycosylation patterns are altered. Mucin biology has been difficult to study at the molecular level, in part, because methods to manipulate and structurally characterize mucin domains are lacking.
View Article and Find Full Text PDFThe serine-rich repeat (SRR) glycoproteins of Gram-positive bacteria are large, cell wall-anchored adhesins that mediate binding to many host cells and proteins and are associated with bacterial virulence. SRR glycoproteins are exported to the cell surface by the accessory Sec (aSec) system comprising SecA2, SecY2, and 3-5 additional proteins (Asp1 to Asp5) that are required for substrate export. These adhesins typically have a 90-amino acid-long signal peptide containing an elongated N-region and a hydrophobic core.
View Article and Find Full Text PDFStreptococcus gordonii and Streptococcus sanguinis are typically found among the normal oral microbiota but can also cause infective endocarditis. These organisms express cell surface serine-rich repeat adhesins containing "Siglec-like" binding regions (SLBRs) that mediate attachment to α2-3-linked sialic acids on human glycoproteins. Two known receptors for the Siglec-like adhesins are the salivary mucin MG2/MUC7 and platelet GPIbα, and the interaction of streptococci with these targets may contribute to oral colonization and endocarditis, respectively.
View Article and Find Full Text PDFThe binding of bacteria to platelets is thought to be a central event in the pathogenesis of infective endocarditis. The serine-rich repeat (SRR) glycoproteins of viridans group streptococci have been shown to mediate platelet binding and to contribute to virulence in animal models. However, it is not known whether SRR adhesins can mediate streptococcal binding under the high fluidic shear stress conditions present on the endocardial surface.
View Article and Find Full Text PDFMany pathogenic bacteria, including , possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is -glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1-3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the adhesin GspB is sequentially -glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach -acetylglucosamine and glucose to Ser/Thr residues.
View Article and Find Full Text PDFThe serine-rich repeat (SRR) glycoproteins are a family of adhesins found in many Gram-positive bacteria. Expression of the SRR adhesins has been linked to virulence for a variety of infections, including streptococcal endocarditis. The SRR preproteins undergo intracellular glycosylation, followed by export via the accessory Sec (aSec) system.
View Article and Find Full Text PDFStreptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life-threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence.
View Article and Find Full Text PDFSerine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity.
View Article and Find Full Text PDFO-glycosylation of Ser and Thr residues is an important process in all organisms, which is only poorly understood. Such modification is required for the export and function of adhesin proteins that mediate the attachment of pathogenic Gram-positive bacteria to host cells. Here, we have analyzed the mechanism by which the cytosolic O-glycosyltransferase GtfA/B of Streptococcus gordonii modifies the Ser/Thr-rich repeats of adhesin.
View Article and Find Full Text PDF