GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion.
View Article and Find Full Text PDFArc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling.
View Article and Find Full Text PDFCalmodulin kinase-like vesicle-associated (CaMKv), a pseudokinase belonging to the Ca/calmodulin-dependent kinase family, is expressed predominantly in brain and neural tissue. It may function in synaptic strengthening during spatial learning by promoting the stabilization and enrichment of dendritic spines. At present, almost nothing is known regarding CaMKv structure and regulation.
View Article and Find Full Text PDFArc, also known as Arg3.1, is an activity-dependent immediate-early gene product that plays essential roles in memory consolidation. A pool of Arc is located in the postsynaptic cytoplasm, where it promotes AMPA receptor endocytosis and cytoskeletal remodeling.
View Article and Find Full Text PDFMutations in the gene encoding dynamin 2 (DNM2), a GTPase that catalyzes membrane constriction and fission, are associated with two autosomal-dominant motor disorders, Charcot-Marie-Tooth disease (CMT) and centronuclear myopathy (CNM), which affect nerve and muscle, respectively. Many of these mutations affect the pleckstrin homology domain of DNM2, yet there is almost no overlap between the sets of mutations that cause CMT or CNM. A subset of CMT-linked mutations inhibit the interaction of DNM2 with phosphatidylinositol (4,5) bisphosphate, which is essential for DNM2 function in endocytosis.
View Article and Find Full Text PDFThe activity-regulated cytoskeletal-associated protein (Arc, also known as Arg3.1) is an immediate early gene product induced by activity/experience and required for multiple modes of synaptic plasticity. Both long-term potentiation (LTP) and long-term depression (LTD) are impaired upon Arc deletion, as well as the ability to form long-term spatial, taste and fear memories.
View Article and Find Full Text PDFActivity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory.
View Article and Find Full Text PDFAn early step in signaling from activated receptor tyrosine kinases (RTKs) is the recruitment of cytosolic adaptor proteins to autophosphorylated tyrosines in the receptor cytoplasmic domains. Fibroblast growth factor receptor substrate 2α (FRS2α) associates via its phosphotyrosine-binding domain (PTB) to FGF receptors (FGFRs). Upon FGFR activation, FRS2α undergoes phosphorylation on multiple tyrosines, triggering recruitment of the adaptor Grb2 and the tyrosine phosphatase Shp2, resulting in stimulation of PI3K/AKT and MAPK signaling pathways.
View Article and Find Full Text PDFActivity-regulated cytoskeletal-associated protein (Arc, also known as activity-regulated gene 3.1 or Arg3.1) is induced in neurons in response to salient experience and neural activity and is necessary for activity-induced forms of synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), cellular substrates of learning and memory.
View Article and Find Full Text PDFEndophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol.
View Article and Find Full Text PDFBackground: The Activity-regulated cytoskeleton-associated protein, Arc, is an immediate-early gene product implicated in various forms of synaptic plasticity. Arc promotes endocytosis of AMPA type glutamate receptors and regulates cytoskeletal assembly in neuronal dendrites. Its role in endocytosis may be mediated by its reported interaction with dynamin 2, a 100 kDa GTPase that polymerizes around the necks of budding vesicles and catalyzes membrane scission.
View Article and Find Full Text PDFBackground: Dynamin 2 (Dyn2) is a ~100kDa GTPase that assembles around the necks of nascent endocytic and Golgi vesicles and catalyzes membrane scission. Mutations in Dyn2 that cause centronuclear myopathy (CNM) have been shown to stabilize Dyn2 polymers against GTP-dependent disassembly in vitro. Precisely timed regulation of assembly and disassembly is believed to be critical for Dyn2 function in membrane vesiculation, and the CNM mutations interfere with this regulation by shifting the equilibrium toward the assembled state.
View Article and Find Full Text PDFThe mitogen-activated protein kinases (MAPKs) ERK1/2 regulate numerous cellular processes, including gene transcription, proliferation, and differentiation. The only known substrates of the MAP2Ks MEK1/2 are ERK1/2; thus, MEK inhibitors PD98059, U0126, and PD0325901 have been important tools in determining the functions of ERK1/2. By using these inhibitors and genetically manipulating MEK, we found that ERK1/2 activation is neither sufficient nor necessary for regulated secretion of insulin from pancreatic β cells or secretion of epinephrine from chromaffin cells.
View Article and Find Full Text PDFMammalian cells express two classes of phosphatidylinositol 4-kinase (PI4K), designated as Types II and III, that phosphorylate phosphatidylinositol to generate PI4P. A number of studies have indicated that these enzymes are important for Golgi trafficking and both early and late stages of endocytosis. In this study, we focus on PI4KIIβ, a protein that is evenly distributed between membrane and soluble fractions, and is believed to participate in stimulus-dependent phosphoinositide signaling.
View Article and Find Full Text PDFType II phosphatidylinositol 4-kinase (PI4KII) produces the lipid phosphatidylinositol 4-phosphate (PI4P), a key regulator of membrane trafficking. Here, we generated genetic models of the sole Drosophila melanogaster PI4KII gene. A specific requirement for PI4KII emerged in larval salivary glands.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein that contains enzymatically functional GTPase and kinase domains. Several noncoding LRRK2 gene polymorphisms have been associated with susceptibility to Parkinson's disease (PD), Crohn's disease, and leprosy. Many LRRK2 coding polymorphisms have been associated with or causally linked to PD.
View Article and Find Full Text PDFPhosphatidylinositol 4-kinase IIα (PI4KIIα) is predominantly Golgi-localized, and it generates >50% of the phosphatidylinositol 4-phosphate in the Golgi. The lipid kinase activity, Golgi localization, and "integral" membrane binding of PI4KIIα and its association with low buoyant density "raft" domains are critically dependent on palmitoylation of its cysteine-rich (173)CCPCC(177) motif and are also highly cholesterol-dependent. Here, we identified the palmitoyl acyltransferases (Asp-His-His-Cys (DHHC) PATs) that palmitoylate PI4KIIα and show for the first time that palmitoylation is cholesterol-dependent.
View Article and Find Full Text PDFT cell activation involves a cascade of TCR-mediated signals that are regulated by three distinct intracellular signaling motifs located within the cytoplasmic tails of the CD3 chains. Whereas all the CD3 subunits possess at least one ITAM, the CD3 ε subunit also contains a proline-rich sequence and a basic-rich stretch (BRS). The CD3 ε BRS complexes selected phosphoinositides, interactions that are required for normal cell surface expression of the TCR.
View Article and Find Full Text PDFMammalian cells express two isoforms of type II phosphatidylinositol 4-kinase: PI4KIIα and PI4KIIβ. PI4KIIα exists almost exclusively as a constitutively active integral membrane protein because of its palmitoylation (Barylko, B., Gerber, S.
View Article and Find Full Text PDFEndophilin, which participates in membrane vesiculation during receptor-mediated endocytosis, is a ∼40 kDa SH3 domain-containing protein that binds to the proline/arginine-rich domain of dynamin, a ∼100 kDa GTPase that is essential for endocytic membrane scission. It has been suggested that endophilin is monomeric in the cytoplasm and dimerizes only after it binds to membranes (or perhaps to dimers or tetramers of dynamin). To clarify this issue, we studied the oligomeric state of endophilin both in vitro using analytical ultracentrifugation and fluorescence anisotropy, and in living cells using two-photon fluorescence fluctuation spectroscopy.
View Article and Find Full Text PDFDynamins induce membrane vesiculation during endocytosis and Golgi budding in a process that requires assembly-dependent GTPase activation. Brain-specific dynamin 1 has a weaker propensity to self-assemble and self-activate than ubiquitously expressed dynamin 2. Here we show that dynamin 3, which has important functions in neuronal synapses, shares the self-assembly and GTPase activation characteristics of dynamin 2.
View Article and Find Full Text PDFMutations in the dynamin 2 gene have been identified in patients with autosomal dominant forms of centronuclear myopathy (CNM). Dynamin 2 is a ubiquitously expressed approximately 100-kDa GTPase that assembles around the necks of vesiculating membranes and promotes their constriction and scission. It has also been implicated in regulation of the actin and microtubule cytoskeletons.
View Article and Find Full Text PDF