Publications by authors named "Barbara Avelar-Pereira"

We proposed a personalized intervention that integrates computerized working memory (WM) training with real-time functional neuromonitoring and neurofeedback (NFB) to enhance frontoparietal activity and improve cognitive and clinical outcomes in children with attention-deficit/hyperactivity disorder (ADHD). The study involved 77 children with ADHD aged 7-11 years, who were assigned to either 12 sessions of NFB or treatment-as-usual (i.e.

View Article and Find Full Text PDF

Amnestic mild cognitive impairment (aMCI) is a risk factor for Alzheimer's disease (AD). Multi-domain cognitive training (CT) may slow cognitive decline and delay AD onset. However, most work involves short interventions, targeting single cognitive domains or lacking active controls.

View Article and Find Full Text PDF

Background: Age represents the largest risk factor for Alzheimer's disease (AD) but is typically treated as a covariate. Still, there are similarities between brain regions affected in AD and those showing accelerated decline in normal aging, suggesting that the distinction between the two might fall on a spectrum.

Objective: Our goal was to identify regions showing accelerated atrophy across the brain and investigate whether these overlapped with regions involved in AD or where related to amyloid.

View Article and Find Full Text PDF

Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial and heterogeneous disorder, which makes early detection a challenge. Studies have attempted to combine biomarkers to improve AD detection and predict progression. However, most of the existing work reports results in parallel or compares normalized findings but does not analyze data simultaneously.

View Article and Find Full Text PDF

We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available.

View Article and Find Full Text PDF

Working memory, a core function underlying many higher-level cognitive processes, requires cooperation of multiple brain regions. White matter refers to myelinated axons, which are critical to interregional brain communication. Past studies on the association between white-matter integrity and working memory have yielded mixed findings.

View Article and Find Full Text PDF
Article Synopsis
  • Healthy aging leads to declines in cognitive performance and changes in brain structure and function, particularly impacting functional connections within networks.
  • Research indicates that associative networks are especially vulnerable to age-related deterioration, which may correlate with cognitive decline, though previous studies have shown mixed results.
  • In a longitudinal study with 284 participants aged 25 to 80, findings revealed that declines in the segregation of associative functional systems were linked to declines in global cognitive ability, partly influenced by changes in white matter integrity.
View Article and Find Full Text PDF

An important but under-investigated confound of functional magnetic resonance imaging (fMRI) is body posture. Although it is well established that body position changes cerebral blood flow, the amount of cerebrospinal fluid in the brain, intracranial pressure, and even the firing rate of certain cell types, there is currently no study that directly examines its effect on fMRI measurements. Moreover, fMRI is typically done in a supine position, which often does not correspond to how these processes are performed in everyday settings.

View Article and Find Full Text PDF

Functional homotopy reflects the link between spontaneous activity in a voxel and its counterpart in the opposite hemisphere. Alterations in homotopic functional connectivity (FC) are seen in normal aging, with highest and lowest homotopy being present in sensory-motor and higher-order regions, respectively. Homotopic FC relates to underlying structural connections, but its neurobiological underpinnings remain unclear.

View Article and Find Full Text PDF

Resting-state spontaneous fluctuations have revealed individual differences in the functional architecture of brain networks. Previous research indicates that the striatal network shows alterations in neurological conditions but also in normal aging. However, the neurobiological mechanisms underlying individual differences in striatal resting-state networks (RSNs) have been less explored.

View Article and Find Full Text PDF

Individuals differ in how they perceive, remember, and think. There is evidence for the existence of distinct subgroups that differ in cognitive performance within the older population. However, it is less clear how individual differences in cognition in old age are linked to differences in brain-based measures.

View Article and Find Full Text PDF

Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state.

View Article and Find Full Text PDF