Acute kidney injury following traumatic brain injury is associated with poor outcome. We investigated in vitro the effects of plasma of brain injured patients with acute tubular kidney injury on kidney tubular epithelial cell function. we performed a prospective observational clinical study in ICU in a trauma centre of the University hospital in Italy including twenty-three ICU patients with traumatic brain injury consecutively enrolled.
View Article and Find Full Text PDFBackground: Neuroinflammation has been proposed as a possible mechanism of brain damage after traumatic brain injury (TBI), but no consensus has been reached on the most relevant molecules. Furthermore, secondary insults occurring after TBI contribute to worsen neurological outcome in addition to the primary injury. We hypothesized that after TBI, a specific pattern of cytokines is related to secondary insults and outcome.
View Article and Find Full Text PDFIntroduction: Previous studies have suggested that cerebrospinal fluid from patients with subarachnoid hemorrhage (SAH) leads to pronounced vasoconstriction in isolated arteries. We hypothesized that only cerebrospinal fluid from SAH patients with vasospasm would produce an enhanced contractile response to endothelin-1 in rat cerebral arteries, involving both endothelin ETA and ETB receptors.
Methods: Intact rat basilar arteries were incubated for 24 hours with cerebrospinal fluid from 1) SAH patients with vasospasm, 2) SAH patients without vasospasm, and 3) control patients.
Background: Ventilator-induced lung injury (VILI) occurs in part by increased vascular permeability and impaired alveolar fluid clearance. Phosphoinositide 3-kinase gamma (PI3Kγ) is activated by mechanical stress, induces nitric oxide (NO) production, and participates in cyclic adenosine monophosphate (cAMP) hydrolysis, each of which contributes to alveolar edema. We hypothesized that lungs lacking PI3Kγ or treated with PI3Kγ inhibitors would be protected from ventilation-induced alveolar edema and lung injury.
View Article and Find Full Text PDFRationale: Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase γ (PI3Kγ) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear.
Objectives: This study aimed to determine the specific role of the kinase activity of PI3Kγ in the pathogenesis of sepsis and multiorgan damage.
Unlike other neuronal counterparts, primary synaptic proteins are not known to be involved in vascular physiology. Here, we demonstrate that neurexins and neuroligins, which constitute large and complex families of fundamental players in synaptic activity, are produced and processed by endothelial and vascular smooth muscle cells throughout the vasculature. Moreover, they are dynamically regulated during vessel remodeling and form endogenous complexes in large vessels as well as in the brain.
View Article and Find Full Text PDFObjective: Limiting tidal volume (VT) may minimize ventilator-induced lung injury (VILI). However, atelectasis induced by low VT ventilation may cause ultrastructural evidence of cell disruption. Apoptosis seems to be involved as protective mechanisms from VILI through the involvement of mitogen-activated protein kinases (MAPKs).
View Article and Find Full Text PDFObjective: To test the hypothesis that extracorporeal therapy with polymyxin B (PMX-B) may prevent Gram-negative sepsis-induced acute renal failure (ARF) by reducing the activity of proapoptotic circulating factors.
Setting: Medical-Surgical Intensive Care Units.
Patients And Interventions: Sixteen patients with Gram-negative sepsis were randomized to receive standard care (Surviving Sepsis Campaign guidelines) or standard care plus extracorporeal therapy with PMX-B.
Background: Severe burn is a systemic illness often complicated by sepsis. Kidney is one of the organs invariably affected, and proteinuria is a constant clinical finding. We studied the relationships between proteinuria and patient outcome, severity of renal dysfunction and systemic inflammatory state in burns patients who developed sepsis-associated acute renal failure (ARF).
View Article and Find Full Text PDFTumor-derived endothelial cells (TEC) display increased survival and angiogenic properties in respect to normal endothelial cells. The aim of this study was to investigate the mechanism potentially involved in TEC proangiogenic phenotype. We found that thrombospondin-1 (TSP-1), a potent physiological inhibitor of angiogenesis, was significantly reduced in TEC in respect to normal endothelial cells.
View Article and Find Full Text PDFPhytohemagglutinin (PHA)-derived T lymphoblasts or T cell clones from patients genetically deficient in IL-12R beta 1 (IL-12R beta 1(-/-)) or IFN-gamma R1 (IFN-gamma R1(-/-)) produced two- to threefold reduced IFN-gamma levels compared to the corresponding cells from healthy individuals after anti-CD3 and PMA stimulation. Moderate IFN-gamma production was observed in PHA-derived T lymphoblasts or T cell clones derived from healthy subjects in the presence of anti-IFN-gamma R1 or anti-IL-12 mAb, whereas it was negligible in the presence of both mAb. However, when anti-IFN-gamma R1 and/or anti-IL-12 mAb were added during restimulation, the cells produced normal levels of IFN-gamma, indicating that both IFN-gamma and IL-12 had an effect on the priming phase.
View Article and Find Full Text PDF