Herein we report the identification of two new fatty acid amide hydrolase (FAAH) inhibitor lead series with FAAH k(inact)/K(i) potency values greater than 1500M(-1)s(-1). The two novel spirocyclic cores, 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase responsible for the degradation of fatty acid amide signaling molecules such as endocannabinoid anandamide (AEA), which has been shown to possess cannabinoid-like analgesic properties. Herein we report the optimization of spirocyclic 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.
View Article and Find Full Text PDFHematopoietic prostaglandin D synthase (HPGDS) is primarly expressed in mast cells, antigen-presenting cells, and Th-2 cells. HPGDS converts PGH2 into PGD2, a mediator thought to play a pivotal role in airway allergy and inflammatory processes. In this letter, we report the discovery of an orally potent and selective inhibitor of HPGDS that reduces the antigen-induced response in allergic sheep.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) has attracted significant attention due to its promise as an analgesic target. This has resulted in the discovery of numerous chemical classes as inhibitors of this potential therapeutic target. In this paper we disclose a new series of novel FAAH irreversible azetidine urea inhibitors.
View Article and Find Full Text PDFHerein we describe the design and synthesis of a novel series of potent thienopyrimidine P2Y12 inhibitors and the negative impact protein binding has on the inhibition of platelet aggregation.
View Article and Find Full Text PDFWe describe the structure-based design, synthesis, and enzymatic activity of a series of substituted pyrazinones as inhibitors of the TF/VIIa complex. These inhibitors contain substituents meta to the P(1) amidine designed to explore additional interactions with the VIIa residues in the so-called 'S(1) side pocket'. A crystal structure of the designed inhibitors demonstrates the ability of the P(1) side pocket moiety to engage Lys192 and main chain of Gly216 via hydrogen bond interactions, thus, providing additional possibility for chemical modification to improve selectivity and/or physical properties of inhibitors.
View Article and Find Full Text PDFThe intracellular distribution of fluorescent-labeled polyamides was examined in live cells. We showed that BODIPY-labeled polyamides accumulate in acidic vesicles, mainly lysosomes, in the cytoplasm of HCT116 colon cancer cells and human rheumatoid synovial fibroblasts (RSF). Verapamil blocked vesicular accumulation and led to nuclear accumulation of the BODIPY-labeled polyamide in RSFs.
View Article and Find Full Text PDFImidazole glycerol phosphate dehydratase (IGPD) has become an attractive target for herbicide discovery since it is present in plants and not in mammals. Currently no knowledge is available on the 3-D structure of the IGPD active site. Therefore, we used a pharmacophore model based on known inhibitors and 3-D database searches to identify new active compounds.
View Article and Find Full Text PDFWe report the use of thermodynamic measurements in a self-complementary DNA duplex (5'-dXCGCGCG)(2), where X is an unpaired natural or nonnatural deoxynucleoside, to study the forces that stabilize aqueous aromatic stacking in the context of DNA. Thermal denaturation experiments show that the core duplex (lacking X) is formed with a free energy (37 °C) of -8.1 kcal·mol(-1) in a pH 7.
View Article and Find Full Text PDFWe report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases.
View Article and Find Full Text PDFDescribed are the design, synthesis, and structures of three nonpolar nucleoside isosteres to be used as probes of noncovalent bonding in DNA and as isosteric replacements for the natural nucleosides in designed nucleic acid structures. Reaction of substituted aryl Grignards with 3',5'-bis-O-toluoyl-α-deoxyibofuranosyl chloride and subsequent deprotection with sodium methoxide in methanol afforded the two β-C-nucleoside pyrimidine analogs 1 and 2. The dimethylindolyl nucleoside 3, a purine isostere, was obtained by a nucleophilic displacement on α-chlorodeoxyribofuranose by the sodium salt of 4,6-dimethylindole, followed by deprotection.
View Article and Find Full Text PDF