Publications by authors named "Barbara A Nsiah"

Pluripotent embryonic stem cells (ESCs) are capable of differentiating into all mesoderm-derived cell lineages, including endothelial, hematopoietic, and cardiac cell types. Common strategies to direct mesoderm differentiation of ESCs rely on exposing the cells to a series of biochemical and biophysical cues at different stages of differentiation to promote maturation toward specific cell phenotypes. Shear forces that mimic cardiovascular physiological forces can evoke a myriad of responses in somatic and stem cell populations, and have, thus, been studied as a means to direct stem cell differentiation.

View Article and Find Full Text PDF

Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation, has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel is intrinsically cell nonadhesive and highly resistant to protein adsorption, allowing a high degree of control over presentation of ligands for cell adhesion and signaling.

View Article and Find Full Text PDF